
Supplementary Material for Shape-Erased Feature Learning for
Visible-Infrared Person Re-Identification

A. On Minimizing I(Z
(i)
se ;Y ;X(s))

In Appendix A, we will proof I(Z(i)
se ;Y ;X(s)) can be approximately upper-bounded by 0, so that max I(Z

(i)
se ;Y |X(s))

can be lower-bounded by max I(Z
(i)
se ;Y ) (Eq. (4), (13) in the paper). We first enumerate the following four hypotheses for

minimizing I(Z
(i)
se ;Y ;X(s)).

Hypothesis:

1. Following [1], if Z(s) is a representation of X(s), then we state that Z(s) is conditionally independent from any other
variable in the system once X(s) is observed (e.g. Z(s) can be a deterministic function of X(s)):

∀A,B, I(A;Z(s)|X(s), B)=0.

2. (Eq. (6) in the paper) Z(s) is a sufficient representation of X(s) for Y , i.e., I(Y ;X(s)|Z(s))=0.

3. (Eq. (8) in the paper) Z(i)
sr can fully represent Z(s), i.e., Z(s) ≡ Z

(i)
sr .

4. (Eq. (1), (2) in the paper) The orthogonality between z
(i)
se and z

(i)
sr can be regarded as a relaxation of independence, i.e.,

∀ (z(i)sr , z
(i)
se ) ∼ (Z(i)

sr , Z
(i)
se ), z

(i)
sr ⊥ z(i)se =⇒ I(Z(i)

sr ;Z
(i)
se ) ≈ 0.

Hypothesis 2 can be satisfied by Proposition 1 in Appendix B. To approximate Hypothesis 3, we minimize element-wise
mean squared error (MSE) between them (Eq. (9) in the paper), and it is to be noted that the gradient of z(s) is discarded.

Theorem 1. If representation Z(s) of X(s) is sufficient for Y , then I(Z
(i)
se ;Y ;X(s)) = I(Z

(i)
se ;Y ;Z(s)).

Proof. Obviously, I(Z(i)
se ;Y ;X(s)) ≥ I(Z

(i)
se ;Y ;Z(s)) holds due to data processing inequality (X(s) → Z(s)). On the other

side, I(Z(i)
se ;Y ;X(s)) can be factorized into two terms by introducing Z(s):

I(Z(i)
se ;Y ;X(s)) = I(Z(i)

se ;Y ;X(s)|Z(s)) + I(Z(i)
se ;Y ;X(s);Z(s)). (A.1)

For the first term of RHS in Eq. (A.1):

I(Z(i)
se ;Y ;X(s)|Z(s)) =I(Y ;X(s)|Z(s))− I(Y ;X(s)|Z(i)

se , Z
(s))

=0− I(Y ;X(s)|Z(i)
se , Z

(s)) ≤ 0,
(A.2)

where I(Y ;X(s)|Z(s)) = 0 using the definition of sufficiency; For the second term of RHS in Eq. (A.1):

I(Z(i)
se ;Y ;X(s);Z(s)) = I(Z(i)

se ;Y ;Z(s))− I(Z(i)
se ;Y ;Z(s)|X(s)). (A.3)

For the second term of RHS in Eq. (A.3):

I(Z(i)
se ;Y ;Z(s)|X(s)) = I(Y ;Z(s)|X(s))− I(Y ;Z(s)|X(s), Z(i)

se )

= 0− 0 = 0,
(A.4)
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where I(Y ;Z(s)|X(s)) = I(Y ;Z(s)|X(s), Z
(i)
se ) = 0 as Z(s) is a representation of X(s) using Hypothesis 1. Therefore,

combining Eq. (A.1) - (A.4) concludes:

I(Z(i)
se ;Y ;X(s)) = I(Z(i)

se ;Y ;Z(s)). (A.5)

Following Theorem 1, and using Hypothesis 3 and 4, we have:

I(Z(i)
se ;Y ;X(s)) = I(Z(i)

se ;Y ;Z(i)
sr ) ≤ I(Z(i)

se ;Z
(i)
sr ) ≈ 0. (A.6)

Based on the above analysis, it is concluded that I(Z(i)
se ;Y ;X(s)) can be upper-bounded by I(Z

(i)
se ;Z

(i)
sr ) ≈ 0.

B. On Loss Functions
In Section 3, we maximize mutual information between representation and label by minimizing cross-entropy loss (Eq.

(5), (7) in the paper). We formulate this approximation as the following Proposition 1.

Proposition 1. Let X and Y be random variables with domain X and Y , respectively. Let Z be a representation of X . Then,
maximizing I(Z;Y ) can be approximated by minimizing cross-entropy loss of q(y|z) given observations from P (X,Y ) as
{xj , yj}Nj=1. q(y|z) is regarded as classifier in practical.

Proof. Using the definitions of mutual information and entropy:

max I(Z;Y ) = H(Y )−H(Y |Z), (B.1)

and as H(Y ) will not change if domain Y does not change, maximizing I(Z;Y ) is equivalent to minimizing H(Y |Z):

minH(Y |Z) =

∫
p(z)H(Y |Z = z)dz

=−
∫∫

p(z)p(y|z) log p(y|z) dydz.
(B.2)

As DKL(p(y|z)∥q(y|z))=
∫
p(y|z) log p(y|z)− p(y|z) log q(y|z)dz≥0 holds identically:

minH(Y |Z) =−
∫∫

p(z)p(y|z) log p(y|z) dydz

≤−
∫∫

p(z)p(y|z) log q(y|z) dydz

=−
∫∫

p(z, y) log q(y|z) dydz

=−
∫∫∫

p(y|x)p(z|x)p(x) log q(y|z) dxdydz.

(B.3)

The last equation holds for Z is conditional independent from Y given X based on the graphical model illustrated in Section
3 in the paper (Y → X → Z), i.e., p(y, z|x)=p(y|x)p(z|x). For specific observations {xj , yj}Nj=1 (and note that p(z|x) is
usually represented as a deterministic function), we can approximate the upper bound of H(Y |Z) by Monte Carlo sampling:

minH(Y |Z) ≤−
∫∫∫

p(y|x)p(z|x)p(x) log q(y|z) dxdydz

≈− 1

N

N∑
j=1

log q(yj |zj),
(B.4)

which is a typical form of cross-entropy loss. Therefore, Proposition 1 holds.

Remark. For Hypothesis 1 in Appendix A, if the approximation in Proposition 1 is close enough, then we can infer that
DKL(p(y|x)∥q(y|z))→0+, which indicates the sufficiency of Z(s) of X(s) for Y .



In Section 3, we minimize cross-view conditional mutual information by minimizing cross-entropy loss (Eq. (10), (11),
(14), (15), (17) in the paper). We formulate this approximation as the following Proposition 2.

Proposition 2. Let X(1) and X(2) be random variables from visible modality and infrared modality (or generally two differ-
ent views, i.e., modality view and body shape view), Y be random variable of identity. Let Z(1) and Z(2) be representations
of X(1) and X(2). Then minimizing I(X(1);Z(1)|X(2)) can be approximated by minimizing cross-entropy between p(y|z(2))
and p(y|z(1)).

Proof.

I(X(1);Z(1)|X(2)) =

∫∫∫
p(x(1), x(2), z(1)) log

p(z(1), x(1)|x(2))

p(z(1)|x(2))p(x(1)|x(2))
dx(1)dx(2)dz(1)

=

∫∫∫
p(x(1), x(2), z(1)) log

p(z(1)|x(1), x(2))p(x(1)|x(2))

p(z(1)|x(2))p(x(1)|x(2))
dx(1)dx(2)dz(1)

=

∫∫∫
p(x(1), x(2), z(1)) log

p(z(1)|x(1))

p(z(1)|x(2))
dx(1)dx(2)dz(1)

=

∫∫∫
p(x(1), x(2), z(1)) log

p(z(1)|x(1))p(z(2)|x(2))

p(z(1)|x(2))p(z(2)|x(2))
dx(1)dx(2)dz(1)

=

∫∫
p(x(1), x(2))DKL(p(z

(1)|x(1))∥p(z(2)|x(2))) dx(1)dx(2)

−
∫

p(x(2))DKL(p(z
(1)|x(2))∥p(z(2)|x(2))) dx(2)

≤
∫∫

p(x(1), x(2))DKL(p(z
(1)|x(1))∥p(z(2)|x(2))) dx(1)dx(2).

(B.5)

Thus, I(X(1);Z(1)|X(2)) can be upper-bounded by DKL(p(z
(1)|x(1))∥p(z(2)|x(2))) integrated over x(1), x(2). We can ap-

proximate this KL divergence by:

DKL(p(y|z(1))∥p(y|z(2))) =
∫

p(y|z(1)) log p(y|z(1))
p(y|z(2))

dy

=

∫
p(y|z(1)) log p(y|z(1)) dy −

∫
p(y|z(1)) log p(y|z(2)) dy,

(B.6)

where the first term of RHS of the last equation assumes to be constant, and the second term can be approximated by cross-
entropy loss using Monte Carlo sampling similarly in Proposition 1. Therefore, Proposition 2 holds.

C. Comparison to MPANet Using the Same Baseline
We conduct an additional experiment to compare the performances of our method and others using our baseline. We choose

MPANet [2], which performed the highest accuracy on SYSU-MM01 among current open-source works. We reproduce it on
our baseline. It is demonstrated in Table S1 that our method achieves higher performances compared to MPANet using the
same baseline.

Method SYSU-MM01 HITSZ-VCM
Infrared-Visible Visible-Infrared

Rank-1 mAP Rank-1 mAP Rank-1 mAP
MPANet 70.58 68.24 46.51 35.26 50.32 37.80

on our base 71.39 67.77 58.46 45.69 61.01 46.98
Ours 75.18 70.12 67.65 52.30 70.23 52.54

Table S1. Reproduce MPANet on our baseline. All Hyper-parameters have been carefully tuned.
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