Supplementary Material for Shape-Erased Feature Learning for
Visible-Infrared Person Re-Identification

A. On Minimizing I(Z{?; V; X))

In Appendix A, we will proof I(Z Oy x (s)) can be approximately upper-bounded by 0, so that max I (Zs(?; Y| X))
can be lower-bounded by max (Zg?; Y) (Eq. (4), (13) in the paper). We first enumerate the following four hypotheses for
minimizing I(Z{Y;Y; X(9).

Hypothesis:

1. Following [1], if Z(*) is a representation of X (%), then we state that Z(*) is conditionally independent from any other
variable in the system once X (s) is observed (e. 8. 7z (s) can be a deterministic function of X (5)y;

VA, B, I(4;Z®)|X® B)=0.
2. (Eq. (6) in the paper) Z(®) is a sufficient representation of X (®) for Y, i.e., I(Y; X(*)|Z(*))=0.
3. (Eqg. (8) in the paper) ng») can fully represent VAS W ACIES Zé(:i).
4. (Eq. (1), (2) in the paper) The orthogonality between z§2 and zgi) can be regarded as a relaxation of independence, i.e.,
V(20 20) ~ (25,20, ) L2 = 12, 20) = 0.

ST

Hypothesis 2 can be satisfied by Proposition 1 in Appendix B. To approximate Hypothesis 3, we minimize element-wise
mean squared error (MSE) between them (Eq. (9) in the paper), and it is to be noted that the gradient of z(*) is discarded.

Theorem 1. If representation Z®) of X ) is sufficient for Y, then I(Zg?; Y; X)) = I(Zg?; Y; Z0).

Proof. Obviously, I(Zé?; Y; X®) > I(Zs(?; Y'; Z(%)) holds due to data processing inequality (X (*) — Z()). On the other
side, [ (Zs(é); Y; X (5)) can be factorized into two terms by introducing Z OF
1Z0 7, XY =120, v; X128 + 120, 7, X9, Z29)). (A.1)

For the first term of RHS in Eq. (A.1):

(27 X Z29) =1(v; X 20) — 1(v; X200, 219)

=0—I(Y; X®)| 20, z2()) <o, (A2
where I(Y; X(®)|Z(5)) = 0 using the definition of sufficiency; For the second term of RHS in Eq. (A.1):
1200 Y; X195 200 = 1200, v 29) — 1(20); 75 29| X ). (A3)
For the second term of RHS in Eq. (A.3):
L2503 291X ) = 1(v; 291X @) = 1(v; 201X ), Z()) ad)

=0-0=0,



where I(V; Z()| X)) = [(V; 29| X, Z) = 0 as Z(*) is a representation of X(*) using Hypothesis 1. Therefore,
combining Eq. (A.1) - (A.4) concludes:

(23 Y:XW) =120 v:29). (A.5)
O
Following Theorem 1, and using Hypothesis 3 and 4, we have:
1227 XW) = 120y 25)) < 1(20); 28)) =~ 0. (A.6)
Based on the above analysis, it is concluded that T (Zg?; Y; X(*)) can be upper-bounded by I (Zg?; Z §2)) ~ 0.

B. On Loss Functions

In Section 3, we maximize mutual information between representation and label by minimizing cross-entropy loss (Eq.
(5), (7) in the paper). We formulate this approximation as the following Proposition 1.

Proposition 1. Let X and Y be random variables with domain X and ), respectively. Let Z be a representation of X. Then,
maximizing 1(Z;Y) can be approximated by minimizing cross-entropy loss of q(y|z) given observations from P(X,Y) as
{z;,y; };V:1 q(y|z) is regarded as classifier in practical.

Proof. Using the definitions of mutual information and entropy:
max [(Z;Y)=H(Y) - H(Y|Z), (B.1)

and as H(Y") will not change if domain ) does not change, maximizing I(Z;Y) is equivalent to minimizing H (Y| Z):

min H(Y|Z) :/p(z)H(Y|Z = 2)dz

(B.2)
/ / z)log p(y|z) dydz.
As D r(p(yl2)lla(yl2)) = | p(ylz)log p(y|z) — p(y|2)log q(y|z)dz >0 holds identically:
min H(Y|Z) = // z)log p(y|z) dydz
/ / 2)log q(y|2) dydz
(B.3)

- // p(z,y)logq(y|z) dydz
- [[[ swieipciop s atyl) dody

The last equation holds for Z is conditional independent from Y given X based on the graphical model illustrated in Section
3 in the paper (Y — X — 2), i.e., p(y, z|z) = p(y|z)p(z|z). For specific observations {x;, yj} ", (and note that p(z|z) is
usually represented as a deterministic function), we can approximate the upper bound of H(Y'|Z ) by Monte Carlo sampling:

min H(Y|Z) < /// (y|x)p(z|z)p(x) log q(y|z) dxdydz
1
~— Nzlogq(yjlzj),
j=1

which is a typical form of cross-entropy loss. Therefore, Proposition 1 holds. O

(B.4)

Remark. For Hypothesis 1 in Appendix A, if the approximation in Proposition 1 is close enough, then we can infer that
D1 (p(y|x)||q(y|2)) = 0%, which indicates the sufficiency of Z*) of X(®) for Y.



In Section 3, we minimize cross-view conditional mutual information by minimizing cross-entropy loss (Eq. (10), (11),
(14), (15), (17) in the paper). We formulate this approximation as the following Proposition 2.

Proposition 2. Let XV and X be random variables from visible modality and infrared modality (or generally two differ-
ent views, i.e., modality view and body shape view), Y be random variable of identity. Let Z) and Z?) be representations
of X and X . Then minimizing 1( XV ; ZM| X 2)) can be approximated by minimizing cross-entropy between p(y|z(?)
and p(y|>1).

Proof.
(D) 1))
@, zM (2 (1 (1) p(z1) W |22)) (1) 1(2) 1.(1)
= I /// Nog o D @@y W4
WD) 22 (1) ],(2)
1) p(zW )z 2N p(e\P|22)) Do) 1
/// (&9, 2, 219 log (z(l)|x(2))p(a;‘(1)|x(2)) dada® dz)
W @ @10 PEDIED) 0y @)
= p(l‘ y LY, 2 )10gmdx dz'\*’dz
p(2(
(1)) (1) (2)]£(2)
5D p(zM ]z )p(22]z) (1) 7..(2) 7,(1) (B.5)
/// )log P2z D) dx'dx'\ dz
= [ [ 2. D oD D12 ®)) eV o

/ p(&®) Diep (p(x D [2@) p(2 @] ®)) d®
< //p(xu),x<2>)DKL(p(Z<1>|x<1))||p(z<2>|x<2>)) PROPRCY

Thus, I(XM; Z(M| X ?)) can be upper-bounded by D1, (p(zM) |z(M)|p(2?|2(?))) integrated over (1), z(2). We can ap-
proximate this KL divergence by:

(1)
D 1) (2) :/ WY1 plylz )d
re (Pl )lp(yl=)) = [ plylz)los 0 2o dy 5o

- / p(yl=0) log p(y|=V) dy — / p(yl=M) log p(y|=2)) dy,

where the first term of RHS of the last equation assumes to be constant, and the second term can be approximated by cross-
entropy loss using Monte Carlo sampling similarly in Proposition 1. Therefore, Proposition 2 holds. O

C. Comparison to MPANet Using the Same Baseline

We conduct an additional experiment to compare the performances of our method and others using our baseline. We choose
MPANet [2], which performed the highest accuracy on SYSU-MMO01 among current open-source works. We reproduce it on
our baseline. It is demonstrated in Table S1 that our method achieves higher performances compared to MPANet using the
same baseline.

HITSZ-VCM
Method SYSU-MMOI Infrared-Visible | Visible-Infrared
Rank-1 mAP | Rank-1 mAP | Rank-1 mAP
MPANet 70.58 68.24 | 4651 3526 | 50.32 37.80
onourbase | 71.39 67.77 | 5846 4569 | 61.01 46.98
Ours 75.18 70.12 | 67.65 5230 | 7023 52.54

Table S1. Reproduce MPANet on our baseline. All Hyper-parameters have been carefully tuned.
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