
Appendix: Tree Instance Segmentation with Temporal Contour Graph

A1. Additional Results
In this section, we expand upon the methods and results we presented in our main paper. We further explain the reasoning

and rationales for making certain choices in our methodology.

Additional qualitative results. Fig. A1 illustrates several additional input-to-output data flows on various types of forest
appearances. In particular, we selected varying shadows, lighting, shapes, colors, and distributions. This example shows the
robustness of our method.

Input image Initial contour After merging Output

Figure A1. Additional qualitative results. We visualize the contour map before and after contour merging.

Additional visual comparisons to baselines: Here, we present more qualitative comparisons to other baselines in Figs.
Fig. A2 and Fig. A3.
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Figure A2. Extended Qualitative Comparisons. Comparisons of our approach vs. Mask2Former and SLIC. We observe that our approach
produces instance segmentation masks that more closely match the human annotation.
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Figure A3. More Qualitative comparisons. Comparisons of our approach vs. Aerial Laser Model and Mask Scoring RCNN. We observe
that our approach produces instance segmentation masks that more closely match the human annotation.

Comprehensive ablation. To offer a more detailed ablation on the effect of out-of-distribution data, we conduct ablations
and report quantitative metrics for Forest B and Forest C (in addition to Forest A, which was presented in the main paper). In
addition, we show the (very low) performance of just using the initial contours as determined by the edge detection network.
Tab. A1 presents the aforementioned metrics.
Justification for Guo-Hall skeletonization [23]. Our method uses Guo Hall (GH) skeletonization [23] to convert and
simplify grayscale contours to binary maps. We illustrate the effects of using GH in Fig. A4, and the resulting segmentation



Forest A Forest B Forest C
Ablated feature AP ↑ AP50 ↑ AP75 ↑ Acc. ↑ AP ↑ AP50 ↑ AP75 ↑ Acc. ↑ AP ↑ AP50 ↑ AP75 ↑ Acc. ↑
All Features 74.5 81.6 72.8 91.5 69.8 76.2 71.5 86.8 70.1 75.4 72.5 90.2
All — aspect ratio 67.6 72.9 68.4 82.4 55.3 60.7 57.5 62.2 57.5 62.2 57.7 56.1
All — solidity 69.2 74.1 66.2 80.1 63.5 75.1 70.2 78.8 65.9 73.6 65.9 71.3
All — self-occlusion 62.9 77.3 71.1 78.2 56.2 58.4 52.5 62.7 56.5 61.8 60.2 66.5
All — patch 51.3 56.8 63.2 71.8 60.2 57.9 61.1 65.9 57.2 54.5 51.9 59.2
All — deviation 59.8 62.2 64.1 70.9 61.3 64.6 62.1 60.4 50.5 62.9 61.4 65.3
All — area 55.1 58.8 61.6 68.3 51.1 52.5 44.6 54.5 54.7 57.2 56.5 59.4
All — neighbor sim. 57.4 61.7 59.6 63.5 54.9 59.7 58.9 59.9 68.6 72.2 70.7 79.5
All — Guo-Hall 32.6 39.2 30.8 41.7 28.8 36.3 31.6 44.2 30.7 38.1 34.7 42.2
Initial Contour 25.7 29.1 27.3 38.5 21.6 22.5 21.8 31.3 28.4 34.8 29.7 36.9

Table A1. Ablation analysis of all forest datasets: Performance of our approach on real-world forest datasets as we ablate each feature.
Also, we show performance when not using Guo-Hall skeletonization and also when directly using the initial contours. The table is sorted
on count accuracy of Forest A to stay consistent with base paper.
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Figure A4. Impact of Guo-Hall Skeletonization (GH) [23]. We visualize, with and without Guo-Hall, the resulting intermediates throughout
the proposed method.

is different as can be seen in the top and bottom rows. The initial edge detector generates edges with doubled contours.
When constructing the contour graph, without GH, we would potentially receive two instead of one contour for each side
(see Fig. A4). This results in double edges in the edge maps and leads to incorrect connectivity between the nodes. This leads
to incorrect contour merging. Such effect is also shown quantitatively in Tab. A1.



Hyperparameter tuning. We used 30× 30 pixels for each node’s representative patch. We selected this dimension through
a hyperparameter tuning experiment using several choices of patch sizes as shown in Tab. A2. The resolution of 30× 30 was
chosen because it outperformed both larger and smaller patches. Using larger patches would pick up pixels from neighboring
nodes that are undesirable at this point of the pipeline. Graph Fig. A5 shows the values of AP and Acc. with varying patch
sizes.

Patch
Size (px) AP ↑ AP50 ↑ AP75 ↑ Acc. ↑

10 x 10 52.1 61.8 57.9 74.4
20 x 20 61.5 74.8 68.1 87.2
30 x 30 68.9 77.3 71.1 90.1
40 x 40 64.2 75.9 70.3 88.3

Table A2. Hyperparameter tuning for patch
size on Forest A.
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Figure A5. Plots showing AP performance and count accuracies vs. patch sizes.

A2. Implementation Details

Compute resource. All our experiments and training were done on a machine with AMD EPYC 7302 16-Core Processor
with 3 GHz clock speed, and 128 GB RAM. Our model is trained with a single NVIDIA RTX 3090 GPU.

Implementation details. Our work is implemented in Python using PyTorch. We utilize Pytorch Geometric [18] for graph
processing and OpenCV for image processing. The deep contour/edge map generation is generated using a deep edge detec-
tion network named Pixel Difference Networks for Efficient Edge Detection (PIDINet) [56] from repository. We retrained the
edge detection network with our annotated dataset. It took approximately 22 hours to train the network with a base learning
rate of 0.01 and weight decay of 0.0005 for 200 epochs. The optimizer used was ADAM [30]. Then, the network could
generate the initial edge maps necessary for our pipeline.

We use a GCN [31] to perform message passing of node embedding, where input features capture each node’s accompa-
nying neighborhood information. In our GCN implementation, we set our walk length to two, which corresponds to K in the
original GCN paper[31]. In this way, we aggregate information from at most two steps (i.e., neighbor of neighbors) away for
each node embedding. We used a base learning rate of 0.1 and weight decay of 0.005 with ADAM [30] and trained for 200
epochs. It took approximately 15 hours to process and train the model on our dataset.

Finally, the MLP used for edge classification is trained with a base learning rate of 0.001 and momentum of 0.9. using
ADAM [30]. It took under two hours to train the MLP classifier for 500 iterations with early stopping at 10 steps.

Baseline implementation details. We document how we train/use the nine baseline models on our dataset.
Mask-RCNN [27]. We use the publicly available implementation Matterport official GitHub repository (which was ac-

knowledged by the original authors). We used the ResNet-101 backbone and retrained on our labeled dataset. We train the
modeling using SGD with a learning rate of 0.001, a momentum of 0.9, and a weight decay of 0.0001. It took approximately
four days to train 200 epochs on our dataset.

Swin-T [41] backbone with Mask-RCNN [27]. We use the official branch in Github from the author’s affiliation – Microsoft
Research, which was specific for instance segmentation. We train the model using a base learning rate of 0.001 and weight
decay of 0.0001 using ADAM [30]. This baseline was trained for 200 epochs, which takes approximately three days.

TraDes [62]. We use the official repository on GitHub. We used the MoT17 [44] pre-trained weights and evaluated our
validation dataset to confirm consistency. We note that MoT17 also had trees and other vegetation classes subjectively similar
to ours.

BoundaryFormer [34]. We use the official implementation on GitHub. We retrained the model using our own dataset.
It took approximately 2 days to finish the training for 200 epochs. We set the base learning rate is set to 0.02 and use the
ADAM [30] optimizer.

Mask Scoring RCNN [28]. We use the official implementation on GitHub. We retrained the model using our own dataset
in COCO format. It took approximately one day to finish the training for 100 epochs. We set the base learning rate to 0.02
with weight decay of 0.0001 and use the SGD optimizer.

https://github.com/zhuoinoulu/pidinet
https://github.com/matterport/Mask_RCNN
https://github.com/microsoft/Swin-Transformer
https://github.com/SwinTransformer/Swin-Transformer-Object-Detection
 https://github.com/JialianW/TraDeS
https://github.com/mlpc-ucsd/BoundaryFormer
https://github.com/zjhuang22/maskscoring_rcnn


Mask2Former [14]. We use the official implementation on GitHub. We retrained the model using our own dataset in
COCO format. It took approximately eight hours to finish the training for 100 epochs. We set the base learning rate to
0.0001, weight decay of 0.05 and use the ADAM [30] optimizer.

Aerial Laser Model [57]. It is an improved parameterized version of YOLOv4. We make the instructed changes to the
PyTorch implementation on GitHub. We retrained the model using our own dataset. It took approximately 12 hours to finish
the training for 200 epochs. We set the base learning rate to 0.0013, weight decay of 0.0005, the momentum of 0.949 and use
the ADAM [30] optimizer.

SLIC (Superpixel) [3]. As this is a traditional algorithm as opposed to a deep learning model, we used the SLIC imple-
mentation from the Python Scikit-Learn package.

OCISIS [15]. We use the official implementation on GitHub. We retrained the model using our own dataset in COCO
format. It took approximately two days to finish the training for 200 epochs. We set the base learning rate to 0.01, weight
decay of 0.0001, and momentum of 0.9 and used the SGD optimizer.
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