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In this Supplementary, we first introduce more details
of our experimental setup in Sec. 1. Then in Sec. 2, we
present more experiments, including performance on other
platforms in Sec. 2.2 and additional analysis in Sec. 2.1.
Next, we describe more details of our dynamic main net-
work and the agent module in Sec. 3. Finally, we have some
further discussions regarding related work in Sec. 4.

1. More Details of Experimental Setup
Here, we present the details of how we build the dynamic

system and test the online models. We use several com-
putation programs (e.g., matrix calculation and deep model
inference) to act as background processes to occupy compu-
tation resources, which leads to a dynamic and fluctuating
system status.

Specifically, to generate various system statuses via
background processes, we prepare three kinds of control-
lable programs: 1) Matrix calculation, where three types of
matrix operations are used in our experiments, e.g., matrix
addition/subtraction, matrix scalar multiplication, and ma-
trix multiplication. The matrix size varies from [4, 64, 64] to
[16, 512, 512]. 2) Video compression, where we use python
to call FFmpeg [2], to convert videos to MP4 format. 3)
Deep model inference, where we run various deep learning
models, including ResNet101 [5], HrNet-w32 [12] and U-
Net [10]. Note that the same program can have multiple
parallel processes, e.g. multiple matrix calculations can be
performed simultaneously to process different matrices.

We write a script to control the above-mentioned back-
ground processes to generate the dynamic system status.
By activating different background processes at different
time steps according to a generated schedule, we can cre-
ate various system status conditions, as shown in Fig. 1.
During training, we randomly generate various schedules
(with each schedule using different processes with differ-
ent activation and sleep periods) for training the models.
For testing, we first randomly generate three schedules with
dynamic system statuses, which have not been seen during
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Figure 1. A schedule of 5 background process’ activation/sleep
periods (top) with the corresponding system status trajectory (bot-
tom). Note that, in our background process schedule (top), the
y axis corresponds to the ID of the background process (which
ranges from 1 to 5 in this figure), and a solid line means that the
specific process is activated for the corresponding duration indi-
cated on the x axis. For the sake of simplicity, in the bottom plot,
we only plot the GPU Usage rates, which is a part of our system
status syst. The GPU Usage rates fluctuate up and down corre-
sponding to the activated background processes, which shows that
we can generate different system status trajectories by activating
or deactivating background processes.
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training. These three sets of background process schedules
(with each leading to a different system status trajectory)
are used to test the performance of all models, and the final
performance is obtained by averaging the results of each
model on all three sets. Notably, we observe that, by con-
trolling the background processes via our script, we can get
nearly the same system status trajectory in multiple runs (for
a given schedule), and since we average over multiple sets
of trajectories, this allows us to have fair comparisons be-
tween different models.

Implementation Details. In Sec. 4.1 of the main paper,
we conduct our experiments using a laptop consisting of
an AMD Ryzen Threadripper 2950X CPU and an NVIDIA
Geforce GTX 1080 GPU (11 GB). On this platform, we pre-
pare four matrix calculators, four deep learning models, and
two video compressors as the background processes to gen-
erate a dynamic system for online models’ evaluation. The
activate/sleep period length of each process has a duration
of [30, 300] frames. In Sec. 4.2 of the main paper, similarly,
we set up 10 background processes for all devices. In order
to sweep the full range of system status in each device, the
configurations of the processes on each device are different.

2. Additional Experiments
2.1. Additional analysis

The performance of each resolution-depth pair. To
further observe and analyze the behavior of our learned pol-
icy, we first report the performance of each subnetwork (i.e.,
resolution-depth pair), by testing each individual “static”
subnetwork for online action recognition on 50Salads. We
present the results in Tab. 1. It shows that all subnetworks
can achieve reasonable performance on online action recog-
nition task with different computational complexity.

Table 1. Results of each resolution-depth pair for online action
recognition.

Resolution-Depth Pair Acc. (%) Max Delay (ms) Mean Delay (ms)
{112,1} 36.6 31.1 18.3
{112,2} 39.6 42.7 24.8
{112,3} 45.2 66.5 42.1
{168,1} 41.9 45.5 27.2
{168,2} 47.7 77.3 47.8
{168,3} 54.3 98.7 70.6
{224,1} 43.6 59.3 40.5
{224,2} 55.1 101.9 70.6
{224,3} 56.0 174.2 125.3

Our SAN 53.8 49.4 29.9

The selection frequency of each resolution-depth pair.
Then, we record the frequency that each subnetwork (i.e.,
resolution-depth pair) is selected by our agent during the
testing phase on the online action recognition task, and
present the results in Tab. 2. We observe that each
resolution-depth pair is selected at least occasionally, which

shows their usefulness, and also the overall efficacy of our
design with dynamic resolution and dynamic depth.

Table 2. Selection frequency of each subnetwork (i.e., resolution-
depth pair) by our agent for online action recognition.

Subnetwork: {112,1} {112,2} {112,3} {168,1} {168,2}
Frequency: 21.4 % 16.7 % 2.5 % 19.8 % 26.0 %
Subnetwork: {168,3} {224,1} {224,2} {224,3}
Frequency: 3.5 % 1.6 % 2.8 % 5.7 %

2.2. More results on other portable devices

To further investigate the effectiveness of our SAN and
MSA, we additionally set up experiments on an NVIDIA
Jetson TX2 platform with an ARM-based Cortex-A57 CPU
and 256-core NVIDIA Pascal GPU (device d), a Windows
laptop with an Intel Core i5-11400H CPU (device e), and
an ARM-based M1 macbook (device f). These experiments
are conducted on the 50Salads dataset, and the results are
reported in Tab. 3 and Tab. 4. Tab. 3 shows that, on these
platforms, our SAN still obviously outperforms (main net-
work + random policy) on all metrics. It also achieves com-
parable accuracy to (main network + stream aware), yet the
delay of our method is much lower. Note that (main net-
work + stream aware) is similar to our method (SAN), and
the only difference is that the system status is not considered
in (main network + stream aware). Tab. 4 reports the result
of adapting the agent pre-trained on two x86 platforms (De-
vice a and Device b as described in the paper) to an x86 un-
seen device (Device e) and two ARM-based unseen devices
(Device d and f). Results show that our MSA algorithm sig-
nificantly improves the accuracy from the baseline (Direct
Transfer) on all metrics.

3. More Details on Architecture of SAN
Below, we provide more details on our SAN network.

3.1. Our dynamic main network

Our dynamic main network adjusts its computation com-
plexity by dynamically changing the execution depth and
the input resolution, as shown in Fig. 2. Below, we intro-
duce more details of how our network achieves dynamic
depth and resolution.

Network for online action recognition. For online ac-
tion recognition, we build a dynamic encoder based on
ResNet50, in which three exit ports are added at the end of
specific convolution blocks {conv3 x, conv4 x, conv5 x}
[5] to achieve dynamic depth, as illustrated in Fig. 2. By
producing predictions using only the early layers of the en-
coder (i.e., early-exit), we can directly reduce the computa-
tional complexity and the time consumption. Furthermore,
because we select an encoder that is fully-convolutional



Table 3. Results of our SAN on other platforms (device d, e and f).

Method d e f
Accuracy Max delay Mean Delay Accuracy Max delay Mean Delay Accuracy Max delay Mean Delay

main network + random policy 47.1 % 251.7 ms 93.3 ms 45.9 % 174.6 ms 78.6 ms 46.5 % 177.0 ms 82.2 ms
main network + stream aware 55.4 % 261.3 ms 112.6 ms 55.4 % 161.9 ms 82.0 ms 55.4 % 194.7 ms 110.4 ms

main network + our SAN 54.1 % 89.7 ms 60.4 ms 55.1 % 67.5 ms 59.1 ms 54.6 % 91.3 ms 73.4 ms

Table 4. Results of our SAN on other platforms (device d, e and f).

Method a+b → d a+b → e a+b → f
Accuracy Max Delay Mean Delay Accuracy Max Delay Mean Delay Accuracy Max Delay Mean Delay

Direct Transfer 41.5 % 94.7 ms 79.0 ms 37.9 % 85.9 ms 59.4 ms 46.8 % 114.3 ms 89.5 ms
Our MSA 51.2 % 91.5 ms 68.4 ms 50.2 % 82.3 ms 55.1 ms 53.4 % 95.8 ms 76.3 ms

(ResNet50), it is also naturally able to process inputs with
varying resolutions. Specifically, the inputs are sized to one
of three resoluion candidates: [112, 168, 224].

Due to the varying size of the dynamic encoder’s out-
put at different exits and using different input resolutions,
we design a unification module for each resolution-depth
pair in order to unify the shapes of the dynamic encoder’s
output features. The unification module consists of a pool-
ing/upsampling layer and a 1 × 1 convolution layer, as
shown in Fig. 2. Specifically, we first utilize a pool-
ing/upsampling layer to resize the resolution of the encoder
output to 7 × 7 and then expand the channel number of
the resized output to 2048 to obtain the final unified fea-
ture 2048 × 7 × 7 via a 1 × 1 convolutional layer. We re-
mark that the unification module not only resizes the shape
of the encoder’s output but also helps to map features from
various resolution-depth pairs to a common space. Lastly,
we perform global average pooling on the unified feature to
obtain the 2048-dimensional vector and feed this vector into
an LSTM, whose output is fed into the task head to predict
the class of the action. Here, the task head is a single fully
connected layer.

Network for online pose estimation. For online pose
estimation, the structure of the dynamic encoder is similar
to that of action recognition, although the resolution can-
didates are instead: [128, 192, 256]. Also, differently, we
utilize the unification module to resize the output of the
encoder to 8 × 8 × 2048 and feed the unified feature into
a ConvLSTM layer [11] for processing the dense spatial-
temporal information. Moreover, our pose estimation task
head, which receives the output of ConvLSTM and outputs
heatmaps for pose estimation, consists of three deconvolu-
tional layers. The structure of the deconvolutional layers is
the same as [18].

3.2. Our agent module

For our agent module, as shown in Fig. 3, we first utilize
two fully connected layers to process the system informa-
tion syst and the hidden state ht−1 in parallel. Next, we

combine the outputs of these layers with additional useful
information gt (i.e., the previous step’s action at−1 and de-
lay dt−1) to build the intermediate feature fim, which is
then fed into two linear layers with a ReLU activation layer
in between to generate the action distribution Pt to decide
the action at. After that, in order to facilitate MSA, the in-
termediate feature fim is combined with at and sent to the
auxiliary head to predict the delay d̂t.

Here, we utilize the nvitop [19] and psutil [4] tools to
capture the list of system status information to build the sys-
tem status syst ∈ R27. We display the list below.

• GPU status: GPU’s current usage rate, GPU’s oc-
cupied memory, GPU’s available memory, GPU’s fan
speed, GPU’s power, GPU’s temperature, and the
number of running processes on GPU.

• CPU status: the number of CPU threads, the CPU’s
current load, the CPU’s average load in the last 1
minute, 5 minutes, and 15 minutes, and the average
temperature of the CPU.

• Virtual Memory status: the percentage of used vir-
tual memory, the percentage of the virtual memory not
being used at all (zeroed) that is readily available, the
active virtual memory, and the inactive virtual mem-
ory.

• Swap Memory status: the total swap memory, the
used swap memory, the free swap memory, the per-
centage of swap memory’s usage, the number of bytes
the system has swapped in from disk, and the number
of bytes the system has swapped out from the disk.

• I/O status: the number of reads, the number of writes,
the number of bytes read, and the number of bytes writ-
ten.

Next, we collect two pieces of information that are gen-
erated in the previous step: the delay dt−1 and the se-
lected action at−1 to build the extra information vector
gt ∈ R2. Moreover, for action recognition, we directly
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(b) The architecture of the main network for online pose estimation

Figure 2. The architecture of our dynamic main network. (a) The main network for online action recognition. The red line illustrates an
example of the flow of the inputs based on the agent’s policy, where the input resolution is resized to 112 and the 1st exit port is activated.
(b) The main network for online pose estimation. The red line illustrates an example of the flow of the inputs based on the agent’s policy,
where the input is resized to 192 and the 2nd exit port is activated.
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Figure 3. Illustration of our agent’s architecture. The system status
syst and the hidden state ht−1 are first separately fed into linear
layers with ReLU activation. Then, the outputs of these linear lay-
ers are concatenated with the other useful information gt to gen-
erate the intermediate feature fim ∈ R18. Next, this feature fim
is fed into the policy head to generate the action probability distri-
bution Pt to select action at. To facilitate MSA, the feature fim is
concatenated with at, and sent to the auxiliary task head to predict
the delay d̂t. Both the policy head and the auxiliary task head con-
sists of two fully-connected layers with a ReLU activation layer in
between.

use the output of the LSTM in the previous step to build
ht−1 ∈ R2048. For pose estimation, we pass the Con-

vLSTM’s output through a global average pooling layer to
generate ht−1.

4. More Discussion on Related Work

Dynamic Networks [1, 3, 6–9, 13, 14, 17, 20] gener-
ally adapt their structure or parameters according to the
input, i.e., they are input-aware. Dynamic networks are
mainly adopted with the aim of computational efficiency
[1, 6, 8, 9, 14–17], although they can also be used to im-
prove accuracy [3, 7]. Existing dynamic networks can im-
prove efficiency by dynamically selecting a cheaper subnet-
work (e.g., skipping layers [14,17], reducing channels [13])
when it is sufficient to provide a good result for the given
input, thus reducing the number of redundant computations.
However, existing input-aware dynamic networks have the
same policy under all different system conditions and plat-
forms. Therefore, since system status conditions can fluc-
tuate, these input-aware dynamic networks can make sub-
optimal decisions in real environments. Compared to ex-
isting dynamic networks, our contribution lies in 2 aspects:
(1) Our SAN is the first to be both input-aware and system-
status-aware, which considers the system status conditions
when making dynamic decisions. (2) We are also the first to
consider the challenging cross-platform adaptation for dy-



namic networks. In order to conveniently deploy our SAN
for different platforms, we propose a novel MSA algorithm
to facilitate self-supervised adaptation to a target deploy-
ment device, without the need for the original labeled data.
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