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This document is a companion to our main paper, provid-
ing additional details and results. In addition, please see the
supplemental video at sgnify.is.tue.mpg.de, which provides
video results that illustrate the performance of our method.

S.1. Examples of Sign Classes
Table S.1 provides representative images of our eight

sign classes to supplement Tab. 1 in the main paper. The
videos of these signs appear in the supplemental video.

S.2. SGNify Objective
The full objective function of SGNify is:

E(θ, ψ, β) = λθbEθb + λmh
Emh

+

EJ + λαEα + EO+

λPEP + λAEA+

Ls +
∑

h∈{r,l}

Lh
i +

λtLt + λstLst, (S.1)

where θ is the full set of optimizable pose parameters,
and θb and mh are the pose vectors for the body and the
two hands. The body pose is modeled by a VAE (called
Vposer) that transforms the body pose, θb, into a latent vec-
tor Z. We enforce an L2 prior in this space, i.e., Eθb(θb) =
∥Z∥2. For the hands, SMPL-X uses a low-dimensional
PCA pose space such that θh =

∑|mh|
n=1 mhn

M, where
M are principal components capturing the finger pose vari-
ations and mhn

are the corresponding PCA coefficients.
Thus, Emh

(mh) is an L2 prior on the coefficients mh. EJ

represents the joint re-projection loss, and Eα(θb) is a prior
penalizing extreme bending only for elbows and knees. For
more details on these terms, please refer to the original
paper of SMPLify-X [9]. EO is a bone-orientation term,
which factors out the residual of the parent joint from the
residual of the child joint. For more details about this term,
please refer to the original paper of RICH [6]. EP and EA

are used to prevent self-interpenetration. When self-contact
occurs, theEP term pushes vertices that are inside the mesh

to the surface, andEA aligns the surface normals of the ver-
tices in contact. For more details, please refer to the original
paper of TUCH [7].

We added Ls and Lh
i to enforce our linguistic con-

straints: Ls represents the symmetry constraints, andLh
i the

hand-pose invariance of the right (r) and left (l) hands, as
described in Sec. 3.2 in the paper. We also added a temporal
loss Lt on the body- and hand-pose vectors and a standing
loss Lst to penalize deviations from a standing pose when
none of the feet keypoints are detected; specifically, this pe-
nalization is applied to the joints below the pelvis and to the
spine.

Finally, each λ denotes the influence weight of each loss
term. For more details on the exact λ values and insights on
the full SGNify objective, please see the code, which can be
reached from the project URL.

We optimize our objective function using the trust-region
Newton conjugate gradient method [8]. Note that we do not
optimize for the shape β and the facial expressions ψ, as
explained in the main paper.
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Figure S.1. We consider an example sequence of 200 frames. (a)
Static hand: Frames whose value on the y-axis is 1 are candidates
for identifying θhref . (b) Transitioning hand and input features for
the sign-group classifier: The first interval shows candidates for
θhref ,i, and the second one for θhref ,f .



Initial
Hand Pose

Final
Hand Pose Class Hand-Pose

Symmetry
Hand-Pose Invariance

Dominant Non-dominant

0a ✗ static ✗

0b ✗ transitioning ✗

1a ✓ static static

1b ✓ transitioning transitioning

2a ✓ static static

2b ✗ transitioning static

3a ✗ static static

3b ✗ transitioning static

Table S.1. Linguistic constraints defining the eight sign classes. See supplemental video.



⟨hns⟩ ::= [SYMMETRY] ⟨block⟩

⟨block⟩ ::= [⟨handshape_block⟩ | ⟨non_handshape_block⟩]*

⟨handshape_block⟩ ::= HANDSHAPE [HANDSHAPE_MODIFIER | HANDSHAPE_FINGER_LOCATION]*

⟨non_handshape_block⟩ ::= ⟨par⟩ | ⟨seq⟩ | ⟨fusion⟩ | EXTENDED_FINGER_LOCATION | PALM_ORIENTATION
| MOVEMENT | MOVEMENT_MODIFIER | LOCATION | LOCATION_MODIFIER |
OTHER_SYMBOL__NO_GROUP

⟨par⟩ : HAMPARBEGIN ⟨block⟩ [HAMPLUS ⟨block⟩] HAMPAREND

⟨seq⟩ : HAMSEQBEGIN ⟨block⟩ HAMSEQEND

⟨fusion⟩ : HAMFUSIONBEGIN ⟨block⟩ HAMFUSIONEND

Figure S.2. Constructed HamNoSys EBNF grammar.

S.3. Intervals for Selecting the Candidate
Frames for the Reference Hand Poses
(θhref , θhref ,i, and θhref ,f )

When articulating an isolated sign, signers start and end
in a rest pose. SGNify identifies the beginning and end of
the sequence based on when the hands begin to move. After
automatic trimming, the initial and final frames of the se-
quence show the transition from the rest pose to the pose(s)
characteristic of the sign. We observe that the transition
from the rest pose to the core part of the sign usually hap-
pens around t = 0.5 ∗ T/8, and the transition from the sign
to the rest pose typically occurs around t = 7 ∗ T/8, where
T is the number of frames in the motion sequence. As a
result, we assume the core part of a sign to happen between
0.5∗T/8 < t < 7∗T/8. Figure S.1a shows the frames dur-
ing which the transitions from/to the rest pose happen (in-
dicated with 0) and the frames during which the sign is ar-
ticulated (indicated with 1) for a sample trimmed recording
containing 200 frames. To identify the two key poses repre-
senting the initial and final hand poses (θrref ,i and θrref ,f ), we
consider two different intervals; we expect to see the first
hand pose at the beginning of the sequence (first interval
shown in Fig. S.1b) and the second hand pose at the end
(second interval shown in Fig. S.1b).

S.4. HamNoSys Parsing

We construct an Extended Backus–Naur form (EBNF)
grammar (see Fig. S.2) to parse HamNoSys [5] annotations
to a form where we can extract labels to train our sign group
classifier. HamNoSys is a universal sign-language phonetic
transcription system that can be used to represent all hand

poses and movements that constitute a sign; i.e., someone
reading a HamNoSys annotation would be able to fully re-
produce the sign it represents. We parse these transcriptions
on the annotated Corpus-Based Dictionary of Polish Sign
Language (CDPSL) [1], and we assign our classes to the
clips as follows:
Class 0a: There is one handshape_block nonterminal and
no SYMMETRY terminal is present.
Class 0b: There are two handshape_block nonterminals,
the two handshape_block nonterminals are not equal, a
HAMREPLACE terminal is present, and no SYMMETRY
or REPEAT terminals are present.
Class 1a: There is one handshape_block nonterminal and a
SYMMETRY terminal is present.
Class 1b: There are two handshape_block nonterminals,
they are not equal, a HAMREPLACE terminal is present,
and no SYMMETRY or REPEAT terminals are present.
Class 2a: There are two handshape_block nonterminals,
they are equal, they fall within a par nonterminal, and no
SYMMETRY terminal is present.
Class 2b: There are three handshape_block nontermi-
nals, the first two are equal, a HAMREPLACE terminal
is present, and no SYMMETRY or REPEAT terminals are
present.
Class 3a: There are two handshape_block nonterminals,
they are not equal, they fall within a par nonterminal, and
no SYMMETRY terminal is present.
Class 3b: There are three handshape_block nonterminals,
the first is not equal to the second, a HAMREPLACE termi-
nal is present, and no SYMMETRY or REPEAT terminals
are present.

Note that the SYMMETRY parameter from HamNoSys



Figure S.3. The multi-view setup comprises 12 synchronized RGB cameras. A close-up frontal camera is zoomed in to focus on the hands
and face. Another frontal camera captures the entire front of the body. Two top-lateral cameras acquire images with a top-down view. Four
lateral cameras are placed at hip level and capture the whole body; two are slightly behind the signer, and the other two are slightly in front.
Two frontal-lateral cameras also have a full-body view, looking slightly down. Finally, two other frontal cameras, one with a bottom-up
view and one with a top-down view, are focused on the hands. The participant stands on a 1.5 m × 1.5 m platform of adjustable height
located in front of a green screen.

[VATER] [AUTO] [AUSGEBEN]

Figure S.4. Sample frames and reconstructions from segments of the German sentence: Der Vater muss für die Reparatur seines Autos
viel Geld ausgeben.



refers to Battison’s symmetry condition [3], which also in-
cludes the signer’s arm movement and not only the hand
pose; in contrast, our symmetry constraint applies only to
hand pose.

S.5. SGNify Extensions
S.5.1. Multi-view

If multi-view video is available, SGNify is easily ex-
tended to this case. We used 12 synchronized RGB cameras
(see Fig. S.3) at 90 fps to capture the same participant used
in the quantitative evaluation plus two additional signers,
a native signer and an interpreter with 17 years of experi-
ence. Each participant articulated all signs in our German
Sign Language (DGS) corpus (see Sec. 4 in the paper). A
close-up frontal camera is zoomed in to focus on the hands
and face of the signer and has a view similar to existing
sign-language videos. Another frontal camera captures the
whole front body of the participant. Two top-lateral cam-
eras acquire images with a top-down view. Four lateral cam-
eras are placed at hip level and capture the whole body; two
are slightly behind the signer, and the other two are slightly
in front. Two frontal-lateral cameras also have a full-body
view, looking slightly down. Finally, two other frontal cam-
eras, one with a bottom-up view and one with a top-down
view, are focused on the hands. The participant stands on
a 1.5 m × 1.5 m platform of adjustable height located in
front of a green screen. Then, multi-view SGNify is used to
fit SMPL-X. We follow Huang et al. [6] to combine the key-
point predictions of different cameras. A person-specific β
is obtained with a 3D scanner. Sample multi-view results
are shown in the supplemental video.

S.5.2. Continuous Sign Language Capture (CSLC)

SGNify can also be used for CSLC. Besides isolated
signs, our corpus contains ten sentences articulated by the
three interpreters during the four sessions; one session with
a 54-camera Vicon mocap system at 120 fps synchronized
with a frontal 4112× 3008 RGB camera at 60 fps, framing
an upper-body view as typically found in SL video (Sec. 4 in
the paper) and three sessions with the multi-view setup (see
Sec. S.5.1). Depending on the interpreter, different DGS
versions of the same German sentences were proposed.

We conduct an exploratory quantitative study with
twelve sentences (ten main sentences and two variations)
collected as in Sec. 4 in the paper and analyzed as in Sec.
5.1 in the paper. Tab. S.2 shows the mean TR-V2V er-
ror across the twelve sentences for four methods and three
body regions. This experiment compares SGNify with
FrankMocap [11], PIXIE [4], PyMAF-X [13], and our base-
line SMPLify-SL. SGNify achieves the lowest error for
the upper body and both hands, beating the state-of-the-art
methods. It is interesting to notice that while FrankMocap

Method Upper Body Left Hand Right Hand

FrankMocap [11] 74.93 23.70 19.57
PIXIE [4] 59.09 24.79 20.19

PyMAF-X [13] 68.30 22.51 18.49
SMPLify-SL 55.71 21.14 18.60

SGNify 54.72 20.28 17.44

Table S.2. Mean TR-V2V error (mm) on fluid sentences.

Figure S.5. Blue vertices are used to calculate vertex error metrics,
while red vertices are ignored. The left image shows the vertices
used for the column of quantitative results labeled “Upper Body”,
i.e., upper-body vertices. The right image shows the vertex subsets
for the left and right hands. Best viewed in color.

has a hand-pose error lower than PyMAF-X in our previ-
ous quantitative experiment (see Sec. 4 in the paper), this
is not true in this second experiment. This inconsistency
further emphasizes the limitations of a per-frame metric for
sign language. In the future, a perceptual study should be
conducted to evaluate the recognition of the reconstructed
sentences with proficient signers. Such an experiment will
give more insights about the next crucial steps for CSLC.
Fig. S.4 shows sample frames and SGNify’s reconstructions
from a sentence of this exploratory study.

S.6. Vertices for Quantitative Analysis
Figure S.5 illustrates the subsets of vertices selected for

the quantitative evaluation.

S.7. Second Perceptual Study
Fig. S.6 shows a sample frame represented with each of

the four methods used in the second perceptual study: real
video, the solid purple avatar from the first study, the same
avatar wearing a black long-sleeved t-shirt, and a fully tex-
tured human character adapted from Meshcapade [2].

S.8. Additional Examples
Figure S.7 shows additional examples from the Real

SASL [10] and CDPSL [1] datasets. Figure S.8 shows addi-



Figure S.6. Sample frames from the four methods presented in the second perceptual study: real video, the solid purple avatar from the
first study, the same avatar wearing a black long-sleeved t-shirt, and a fully textured human character.

tional examples from The American Sign Language Hand-
shape Dictionary [12] and our collected DGS dataset (see
Sec. 4 in the paper).



Figure S.7. Additional examples on the Real SASL and CDPSL sign-language dictionaries.



Figure S.8. Additional examples on The American Sign Language Handshape Dictionary and our captured dataset.
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