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A. Experiment Details

A.1. Stream Dataset Details

In total, we pre-process and use 71 datasets from the
computer vision literature and Kaggle [1–71]. We use the
train and validation split from each original dataset and for
each task. Some datasets have multiple ways to label an
image, for example, CelebA [9] assigns 40 binary labels
to each image, such as ‘Brown Hair’ or ‘Blurry’. We use
‘Sub Task’ to denote which split or sub-task we use for each
dataset and refer the reader to the original dataset documen-
tation on the details of each split. We do not modify or alter
any of the datasets in any way. To speed up training and
evaluation, we extract the image feature vectors for each
dataset using a CLIP model and use them for the classifica-
tion task directly. Tab. 6 and Tab. 7 contain the statistics for
each dataset.

Task difficulty. SGD performance can be used as a
proxy for task difficulty [72]. Some tasks, such as Plan-
ets [51] (task id 50), have really low difficulty and thus high
performance on SGD. The inflated performance on the task
can be caused by over-fitting or be a reflection of the poor
curation process and similarity between the train and valida-
tion split of the dataset. The purpose of the Stream dataset is
to introduce nuances between tasks, such as with the vary-
ing training dataset size. As such, we welcome the nuances
and errors that are inherited in each task, as they are a reflec-
tion of a realistic training and evaluation scenario. Since all
methods are evaluated under the same conditions, the com-
parison is equivalent. Lastly, the Stream dataset contains a
diversity of images, reflected by the curation protocol used
to compose each task dataset.

A.2. Training Configurations

We report the performance of SGD on each task in Tab. 6
and Tab. 7. SGD performance can be considered as an up-
per bound for our model and train configuration. We com-
pute SGD performance by training on the task in an isolated
manner and without applying any method to mitigate forget-
ting. We evaluate SGD performance on the validation set of
each task.

When evaluating the time performance of each method
we compute the total time for the method to train on a task.
The total duration of the training run can include a warm-
up and post-train phase as part of each method. We use
CIFAR-100 as an auxiliary dataset for DMC [73].

The train configuration is reported in Tab. 1. We reset the
learning rate before and after each rehearsal episode. For
both the baseline methods and our method, we use an MLP
with residual connections as a backbone model. We apply
Batch Normalization [74] after every layer and the ReLU
activation function [75]. All experiments run on identi-
cal hardware of a V100 GPU cluster and we distribute the
workload using Ray [76].

We provide in Tab. 2 and Tab. 3 the hyper-parameters
used in Stream Benchmark experiments. We use the re-
ported hyper-parameters for all baseline methods. When
experimenting BMC on split CIFAR-100 and split Tiny-
ImageNet, we use a memory size of 2,000 and a buffer size
of 200 with all other settings the same as learning on Stream
Benchmark.

Benchmark Num. tasks
Optimizer SGD [77]

Rehearsal Scheduler ReduceLROnPlateau1

Learning Rate 0.1
Train epochs per Task 2

Rehearsal epochs per Task 100
GPU V100

Model Residual MLP
Res. Blocks 2
Res. Layers 3

Dropout 0.3
Res. Dim 256

Hidden Dim 128
Initialization Xavier [78]

Table 1. Train Configuration. Detailed overview in Appendix A.2.

1https : / / pytorch . org / docs / stable / generated /
torch.optim.lr_scheduler.ReduceLROnPlateau.htm

1

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.htm
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.htm


Baselines Hyper-params Values
Memory size 10,000

ER Replay coef. 1.0
DER Distill coef. 0.5

DER++ Replay coef. 1.0
Distill coef. 0.5

GDumb
Max/min LR 5e-2 / 5e-4
Epochs 256
Cutmix None

HAL
Penalty coef. 0.1
Beta 0.5
Gamma 0.1

LwF Penalty coef. 0.5
Temperature 2.0

GSS Minibatch size 10
Batch Num 1

DMC Consolidation LR 0.05
Consolidation Epochs 10

EWCon
Penalty coef. 0.7
Gamma 1.0

MAS Penalty coef. 0.7
Gamma 1.0

SI c 0.5
xi 1.0

Table 2. Hyper-parameter settings for training the baseline meth-
ods on Stream Benchmark. Baselines that do not have extra hyper-
parameters are omitted (A-GEM, iCaRL).

Phase Hyper-params Values

Regularization Stability coef. 1.0
Buffer size 10,000

Consolidation

Num. Experts 10
Task loss coef. 1.0
Consolidation coef. 1.0
Buffer sampling Random

Table 3. Hyper-parameter settings for training BMC on Stream
Benchmark.

B. Stream Benchmark Analysis

Methods Stream Benchmark ↑ Time ↓
SGD 2.1 100%

Multi-Task 89.3 100%
AGEM [79] 6.6 231%

AGEMR [80] 4.3 230%
DER [81] 5.6 170%

DER++ [81] 19.4 205%
DMC [73] 1.0 140%

ER [82] 41.4 184%
ER-ACE [82] 29.3 184%
EWCon [83] 2.1 172%
GDumb [84] 33.0 129%

GSS [85] - 1203%2

HAL [86] - 730%2

iCaRL [87] 23.4 141%
LwF [88] - 201%2

MAS [89] 2.1 144%
SI [90] 1.4 515%

BMC (Ours) 70.4 78%

Table 4. CIL performance on Stream Dataset for 71 tasks. We
use ‘-’ to denote results that were not feasible to obtain for all
71 tasks due to intractable runtime. 2Signifies incomplete time-
performance evaluation. Detailed explanation of the results in Ap-
pendix B

We evaluate a set of recent (e.g. DER++ [81]) and old
baselines (e.g. ER [82]) applicable to our setting, while
some other recent baselines have a limited setting, i.e.,
Transformer models [91]. Recent methods achieved better
performance on standard benchmarks (i.e. CIFAR-100) did
not outperform a naive baseline (ER) on Stream.

Some methods such as GSS [85] can have an intractable
run-time that grows with the number of tasks learned. Other
methods, such as LwF [88], have a warm-up stage that re-
quires using the train dataset. Such methods fail to com-
plete past Task id 34 (iNaturalist [35]) since the step of the
method is coupled with the size of the task. iNaturalist [35]
is made up of 2686843 images, so if a step of a method re-
quires constructing a buffer with new artifacts for each sam-
ple [88] or performing multiple back-props [85], the method
may not complete the task. The time-performance factor in
Tab. 4 may not reflect the failure, such as for LwF [88],
since the factor is calculated at the end of training on a task.

We allow all baselines to run uninterrupted for 4 days and
we terminate the experiment on the last day. All methods
for which we report results finish the benchmark within 24
hours.



B.1. Normalized Performance

Fig. 1 presents the normalized performance by task diffi-
culty as discussed in Appendix A.1. It can be observed that
there is noise when normalizing for task difficulty, or that
the method performs better than the upper bound for that
task. The results can be explained as an artifact of forward
transfer [72] as well as inherited problems with the task
dataset, such as overfitting or an imbalanced train-validation
split [16].

B.2. First Task Performance

When evaluating the performance of a method on first
task, we observe similar results to the mean task accuracy
(Fig. 2), with some exceptions. BMC, our method retains
performance on the first task as compared to other baselines.
Additionally, the performance difference between mean ac-
curacy and first task accuracy between our method and the
baselines is more prominent when evaluating only on the
first task. GSS [85], retains performance on the first task
but does not learn new tasks. iCaRL [87] outperforms other
baselines on the first task accuracy, but it does not perform
as well when evaluated in mean accuracy. We hypothesize
that this is due to the herding strategy used by iCaRL to
compose the buffer that can avoid the task-recency bias.

B.3. Time Performance Evaluation

Most methods perform similarly in terms of run-time on
the benchmark. Some notable exceptions are SI [90], GSS
[85] and HAL [86]. Other methods can have a run-time per-
formance that can be seen as non-equivalent. Such methods
can perform a step that is agnostic to the task dataset size,
such as constructing an auxiliary dataset [73] or training on
an auxiliary buffer [84, 87]. As such, the run-time perfor-
mance of such methods can fluctuate greatly between tasks
Fig. 3 (Middle). Additionally, the relative time performance
Tab. 4 can appear inflated.

Our method, BMC, can take advantage of training multi-
ple tasks in a distributed fashion and, as such, perform better
than the baseline SGD Fig. 3 (Middle). Our method has a
run-time bottleneck by the largest task in each train incre-
mental step. This is due to the wait operation between each
task-batch in order to apply batched distillation loss. For
the last task of the 71 datasets, our method is slower than
SGD as the performance effect of batched-task incremental
learning is not utilized.

B.4. Pareto Front

The Pareto front of our method shows a trade-off be-
tween the Total Cost of a memory and a buffer with Mean
Accuracy. We run multiple experiments and vary the buffer
size and memory size. We independently sample the Buffer
and Memory size configuration between 8k to 20k exem-

plars at the start of each experiment. The Total Cost repre-
sents the mean number of exemplars stored at each train
incremental step of our method. The performance gain
plateaus as we increase TC. Some configurations are not
Pareto optimal, such as the use of a very small buffer and re-
ally large memory or vice versa. Both the buffer and mem-
ory are integral parts of our method’s performance but ob-
serve a limitation on the improvement they provide to the
performance beyond a certain point. As such we hypothe-
size that improvements in both the utilization and construc-
tion of the buffer and memory are more significant than the
size of the buffer.

Lastly, we motivate a method not to be evaluated at a
single point when evaluating the cost performance of the
method. As can be observed, the relationship between TC
and Mean Accuracy is not linear and requires that more than
one configuration be evaluated.

Figure 4. Trade-off between TC and Mean Accuracy for our
method (BMC) with details discussed in Appendix B.4.

C. Ablation Experiments
We motivate our ablation study in performing an unbi-

ased estimate of each component of our method. Using
the benchmark dataset can be a biased estimate of a com-
ponent of a method for the following reasons. First, we
need a dataset for which we have access to a large number
of tasks that are evenly divisible by the number of experts
we evaluate, i.e. 128 by 16. Second, for the benchmark
the tasks have different domain-gaps, for example the dif-
ference between ‘Lego’ and ‘Rooms’ datasets. Third, the
tasks have varying lengths and numbers of classes, such
that ‘Lego’ has 32,000 train images with 46 classes and
‘Rooms’ has 3,937 images with 5 classes. An ablation study
on a dataset with multiple sources of experimental variance
requires additional experimental trials for an unbiased es-
timate. Permuted-MNIST meets all of the above require-



Figure 1. Left mean accuracy normalized for task difficulty. Easier tasks are less difficult to forget. Right performance on the first task.
GSS maintains performance on the first task but fails to learn new tasks Fig. 2.

Figure 2. (CIL) Mean Accuracy, some methods (GSS, HAL, LwF) [85, 86, 88] fail to complete task 34 (iNaturalist [35]) due to the size of
the dataset.

ments but for the same reasons is not suitable for a bench-
mark.

We run 629 experiments of 128 tasks and randomly sam-
ple each hyper-parameter that controls a different compo-
nent for our method, which require 1 week of training time
on a GPU cluster of x8 V100. We vary the stability co-
efficient (λ), consolidation coefficient (β), Number of Ex-
perts, Consolidation Loss Lbmc, Stability Loss Lbd and both
Memory and Buffer sampling Method. Each experimental
configuration is randomly sampled, and as such, it is im-
portant to consider both the mean and the best-performing
configuration when evaluating a setting. The reason is that
there can be poor synergy between two randomly sampled

settings or that a method is not fully evaluated. For exam-
ple, consider that a really small value for λ can be used and
as such the full effect of the loss function used for a stabil-
ity loss cannot be evaluated in that context. Additionally,
each Stability Loss can have different sensitivity to λ and
as such maintaining the coefficient fixed or evaluating on
different ranges can make the comparison non-equivalent.
All settings have their values randomly sampled from the
reported interval. Results presented in Fig. 5, Fig. 6, Fig. 7
and discussed in this section.



Figure 3. Relative time performance of each baseline compared to run-time using SGD (Left). A factor of 1 signifies equivalent perfor-
mance to SGD. SGD performance is independent of the task dataset size, while some methods can have a component that depends on the
size of the task dataset (Middle). Our method (Right) performs better than SGD under a distributed setting.

Figure 5. Aggregated results on an ablation study with 629 experiments for Permuted-MNIST. We randomly sample the type of loss for
each phase of our method, the weight coefficient of each component as well as the sampling method. From Left to Right. Evaluation of loss
in direct replacement to Lbd (Ours) for alternative losses Lkd, Lϕ−2 , LDMC . Stability Loss as a regularization component in replacement
to Lbd and sampling method in replacement to Random. (Top) row reports the Mean Accuracy, where higher is better. (Bottom) row
reports the Backward Transfer, where higher is better. Lbd has both the best-performing trials and a higher mean score for each metric.
Naive random sampling for constructing the buffer performs the best. p values are reported from one-way ANOVA between our purposed
method and each corresponding method. Additional details in Appendix C.1, Appendix C.2 and Appendix C.3

C.1. Batched Distillation Loss

We consider several alternatives in direct replacement to
Lbd. We use Lbd for two components of our method, on the
Consolidation Loss for Lbmc and as a Stability Loss. We
report the results in Fig. 5 (Left and Middle). We evaluate
three alternative methods, such as Lkd, Lϕ−2

, LDMC . Lkd

is Knowledge Distillation (KD) [92] applied on the logit
space, similar to [81, 87]. Lϕ−2 is Knowledge Distillation
applied on the pen-ultimate representation [93, 94]. LDMC

is Knowledge Distillation applied on a slice of logits us-
ing double distillation loss [73], similar to [95]. We eval-

uate the statistical significance on both evaluation metrics,
Mean Accuracy and Backward Transfer. When consider-
ing the statistical significance on both metrics, Lbd outper-
forms other alternatives when used in Lbmc and as a Sta-
bility Loss. Lϕ−2

, performs similarly to Lbd and is able to
reach a higher Mean Accuracy in the study. However, we
find that the results are not consistent and the mean value
for Lϕ−2 on each metric is lower. The result is not statis-
tically significant based on a p-value > 0.05. As such, the
two methods can be evaluated further in future work.



C.2. Regularization Loss

Elastic Weight Consolidation (EWC) [96] uses an alter-
native loss term to the current task loss that provides an op-
timization constraint on the parameters when training on a
new task. The importance of each parameter to the current
task is calculated based on an approximation of the Fisher
Information Matrix. We use EWC as stability-loss in di-
rect replacement for Lbd. Figure 6 shows that EWC poses a
strict constraint to the parameter and is unable to learn new
tasks. Lbd outperforms EWC in this context. This could
be explained by the large domain shift between each per-
mutation and the limitation in the capacity of the backbone
model for which it is not possible to isolate all parameters
while learning new tasks. As such, we hypothesize that con-
structive interference methods such as KD are better candi-
dates for both components of our method.

(a) Mean Accuracy (b) Mean Forgetting

Figure 6. Comparison of using EWC in replacement to Lbd for
Mean Accuracy (Left) and Backward Transfer (Right).

C.3. Buffer Sampling

We examine two alternatives to Random sampling. We
use gradient information as a heuristic when constructing
the Buffer. In detail, we use the samples that produce the
largest gradient with respect to the base model (θbase) with
the intuition that they will be the most informative during
the consolidation of θbase. We also use samples that pro-
duce the smallest gradient norms w.r.t. the expert model
(θexpert) with the intuition that they are the most represen-
tative of the task the expert was trained on. Both methods
perform poorly as compared to Random sampling. We hy-
pothesize alternatives or improvements in the buffer sam-
pling method can outperform Random in terms of task per-
formance, but also consider that they can perform poorly in
terms of run-time.

C.4. Parameter Importance

We evaluate the most important component of our
method using fANOVA parameter importance [97]. We find
that the Number of Experts contributes the most to both the
Mean Accuracy and Backward Transfer. Interestingly, both
Lbmc and the sampling method contribute more to the Mean

Accuracy than Backward Transfer. Our findings in Fig. 7
agree with our analysis that Lbmc provides a better approx-
imation to the multi-task gradient as opposed to single-task
consolidation and finally achieves higher Mean Accuracy
within a batch of tasks. Likewise, a higher Number of Ex-
perts puts more constraints on the gradient updates than a
small Number of Experts, making the gradient less ‘sharp’.
It reduces the bias toward every single task and benefits the
Backward Transfer as it protects the parameters for previous
tasks.

Figure 7. Importance of each component of our method in Back-
ward Transfer (Dark Blue) and Mean Accuracy (Light Blue). We
report the importance score using fANOVA [97]

Figure 8. We vary the coefficient of task loss as well as the buffer
and memory size to examine their effects on final average accuracy
performance.

C.5. Task Loss Coefficient & Buffer-Memory Sizes

We attach the ablation study results for task loss coef-
ficient in the consolidation phase, buffer size and memory
size in Fig. 8. Figures for buffer and memory size are as
supplementary to the correlation we reported in the main
text. In task loss coefficient, we find its low correlation to
the final average accuracy.

C.6. Backbone Model

Results obtained in Tab. 4 are subject to the backbone
model used in extracting feature vectors. As we have to op-
timize 16 baselines; for 6,770,722 images and 2,866 classes,
CLIP embeddings allow us to evaluate the merits of each
baseline without extra computational cost. We include the



Method CLIP ViT ResNet50 Avg.
ER 41.4 32.8 27.6 33.9

DER++ 19.4 15.1 12.7 15.7
BMC 70.4 60.2 47.0 59.2

Table 5. Comparing BMC (ours), ER and DER++ on different
backbone models CLIP, ViT [98] and ResNet50 on Stream Bench-
mark following the same experiment configurations. BMC outper-
forms other methods constantly on all backbones.

results of the ablation between the pre-trained CLIP, ViT
and ResNet50 features on Stream Benchmark and show that
our method can work across different backbones in Tab. 5.
BMC outperforms the next best method (ER) by 25.3% on
3 backbones in average. We emphasize that the evaluation
of the backbone model is orthogonal to both our method
and the benchmark, as any backbone can be used in direct
replacement.



Task ID Name Num. Classes Num. Train Images Num. Val Images Sub Task Val. Acc. (SGD)

0 Aircraft [1] 70 3334 3333 Family 74.74
1 Apparel [2] 6 8538 2847 Color 98.63
2 Aptos2019 [3] 5 2746 916 - 81.88
3 Art [4] 14 72009 24004 - 84.21
4 Asl [5] 29 65250 21750 - 99.89
5 Boat [6] 9 2193 731 - 99.86
6 Cars [7] 196 8144 8041 - 88.70
7 Cataract [8] 4 901 301 - 88.70
8 CelebA [9] 2 151949 50650 Shadow 93.42
9 Colorectal [10] 8 7500 2500 - 97.16
10 Concrete [11] 2 30000 10000 - 99.90
11 Core50 [12] 50 123649 41217 Object 99.69
12 Cub [13] 200 5994 5794 - 82.31
13 Deepweedsx [14] 9 15007 2501 - 93.24
14 Dermnet [15] 23 15557 4002 - 63.09
15 Dtd [16] 47 1880 1880 Split 1 76.60
16 Electronic [17] 36 16152 5384 - 76.10
17 Emnist [18] 47 112800 18800 Balanced 86.61
18 Eurosat [19] 10 20250 6750 - 97.61
19 Event [20] 8 1180 394 - 100.00
20 Face [21] 3 10902 3634 - 98.98
21 Fashion [22] 5 33329 11112 Gender 94.47
22 Fer2013 [23] 7 28709 7178 - 72.99
23 Fgvc6 [24] 251 118475 11994 - 79.31
24 Fish [25] 9 6750 2250 - 100.00
25 Flowers [26] 17 1020 340 Split 1 99.12
26 Food101 [27] 101 75750 25250 - 95.03
27 Freiburg [28] 25 3710 1237 - 97.33
28 Galaxy10 [29] 10 13302 4434 - 77.60
29 Garbage [30] 12 11636 3879 - 98.20

Table 6. Dataset used in Stream benchmark. Where applicable, Sub Task refers to the dataset split used in classifying each dataset.
Additional details in Appendix A.1 and additional dataset in Tab. 7.



Task ID Name Num. Classes Num. Train Images Num. Val Images Sub Task Val. Acc. (SGD)

30 Gtsrb [31] 43 39209 12630 - 94.13
31 Ham10000 [32] 7 15022 5008 - 95.09
32 Handwritten [33] 33 1237 413 Letters 74.09
33 Histaerial [34] 7 26460 11340 Small 75.26
34 iNaturalist [35] 51 2686843 100000 Species 96.36
35 Indoor [36] 67 5360 1340 - 92.46
36 Intel [37] 6 14034 3000 - 95.90
37 Ip02 [38] 102 52603 22619 - 70.14
38 Kermany2018 [39] 4 83516 968 - 97.00
39 Kvasircapsule [40] 14 28342 9448 - 97.52
40 Landuse [41] 21 9450 1050 - 99.05
41 Lego [42] 46 32000 8000 - 91.20
42 Malacca [43] 3 121 41 - 100.00
43 Manga [44] 7 341 114 - 76.32
44 Minerals [45] 7 4111 1371 - 93.87
45 Office [46] 65 1820 607 Art 84.68
46 Oriset [47] 4 11110 3703 Origami 95.52
47 Oxford [48] 17 3797 1266 - 66.03
48 Pcam [49] 2 262144 32768 - 82.06
49 Places365 [50] 365 1803460 36500 - 54.79
50 Planets [51] 11 1228 410 - 100.00
51 Plantdoc [52] 28 2340 236 - 61.86
52 Pneumonia [53] 2 5232 624 - 81.09
53 Pokemon [54] 150 4994 1665 - 95.62
54 Products [55] 12 59551 60502 - 88.10
55 Resisc45 [56] 45 23625 7875 - 95.77
56 Rice [57] 5 56250 18750 - 99.84
57 Rock [58] 7 1515 506 - 82.21
58 Rooms [59] 5 3937 1313 - 93.37
59 Rvl [60] 16 320000 39999 - 88.03
60 Santa [61] 2 614 616 - 98.54
61 Satellite [62] 4 35679 11894 - 94.97
62 Simpsons [63] 42 31399 10467 - 99.38
63 Sketch [64] 250 15000 5000 - 78.82
64 Sports [65] 100 14072 500 - 99.00
65 Svhn [66] 10 73257 26032 - 82.23
66 Textures [67] 64 4335 4340 - 99.82
67 Vegetable [68] 15 18000 3000 - 99.93
68 Watermarked [69] 2 24987 6588 - 95.39
69 Weather [70] 4 841 281 - 98.22
70 Zalando [71] 6 24270 8090 - 78.44

Table 7. Dataset used in Stream benchmark. When applicable, Sub Task refers to the split of the dataset used in classifying each dataset.
Additional details in Appendix A.1 and additional dataset in Tab. 6.
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Béatrice Fervers, and Laure Tougne. Automatic Land Cover
Reconstruction From Historical Aerial Images: An Evalu-
ation of Features Extraction and Classification Algorithms.
IEEE Transactions on Image Processing, Jan. 2019. 1, 9

[35] Visipedia. inaturalist 2021 competition: Fgvc8 workshop
at cvpr. https://github.com/visipedia/inat_
comp/tree/master/2021. Accessed: 2022-10-30. 1,
2, 4, 9

[36] Ariadna Quattoni and Antonio Torralba. Recognizing indoor
scenes. In 2009 IEEE conference on computer vision and
pattern recognition, pages 413–420. IEEE, 2009. 1, 9

[37] Puneet Bansal. Intel image classification: Image
scene classification of multiclass. https://www.
kaggle . com / datasets / puneet6060 / intel -
image-classification. Accessed: 2022-11-10. 1,
9

[38] Xiaoping Wu, Chi Zhan, Yu-Kun Lai, Ming-Ming Cheng,
and Jufeng Yang. Ip102: A large-scale benchmark dataset
for insect pest recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019. 1, 9

[39] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Car-
olina CS Valentim, Huiying Liang, Sally L Baxter, Alex
McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al.
Identifying medical diagnoses and treatable diseases by
image-based deep learning. Cell, 172(5):1122–1131, 2018.
1, 9

[40] Manish KC (username). The kvasir-capsule dataset.
https : / / www . kaggle . com / datasets /
manishkc06 / the - kvasircapsule - dataset.
Accessed: 2022-11-10. 1, 9

[41] Yi Yang and Shawn Newsam. Bag-of-visual-words and spa-
tial extensions for land-use classification. In Proceedings of
the 18th SIGSPATIAL international conference on advances
in geographic information systems, pages 270–279, 2010. 1,
9

[42] Joost Hazelzet. Images of lego bricks: 40,000 images
of 50 different lego bricks. https://www.kaggle.
com/datasets/joosthazelzet/lego- brick-
images. Accessed: 2022-11-10. 1, 9

[43] Joey Lim Zy. Historical building (malacca, malaysia):
162 images of historical buildings in malaysia. https:
/ / www . kaggle . com / datasets / joeylimzy /
historical-building-malacca-malaysia. Ac-
cessed: 2022-11-10. 1, 9

[44] Mert Koklu. Manga facial expressions: Facial expres-
sions of manga (japanese comic) character faces. https:
//www.kaggle.com/datasets/mertkkl/manga-
facial-expressions. Accessed: 2022-11-10. 1, 9

[45] YoucefATTALLAH97 (username). Minerals identification
& classification: Minet v2. https://www.kaggle.
com/datasets/youcefattallah97/minerals-
identification - classification. Accessed:
2022-11-10. 1, 9

[46] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5018–5027, 2017. 1, 9

[47] Daniel Ma, Gerald Friedland, and Mario Michael Krell.
Origamiset1. 0: Two new datasets for origami classification
and difficulty estimation. arXiv preprint arXiv:2101.05470,
2021. 1, 9

[48] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and
Andrew Zisserman. Object retrieval with large vocabularies
and fast spatial matching. In 2007 IEEE conference on com-
puter vision and pattern recognition, pages 1–8. IEEE, 2007.
1, 9

[49] Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco
Cohen, and Max Welling. Rotation equivariant CNNs for
digital pathology. In Alejandro F. Frangi, Julia A. Schn-
abel, Christos Davatzikos, Carlos Alberola-López, and Ga-
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