
The Best Defense is a Good Offense: Adversarial Augmentation against
Adversarial Attacks (Supplementary)

Iuri Frosio, NVIDIA
ifrosio@nvidia.com

Jan Kautz, NVIDIA
jkautz@nvidia.com

1. Supplementary

1.1. Threat models and usage scenarios

The first row in Fig. 1 depicts a complete schematic rep-
resentation of A5, our framework for robust augmentation
of both physical objects w or data x, that makes them cer-
tifiably robust against MitM and physical (not tested here)
adversarial attacks. The A5 model includes an acquisition
block, that can simulate image capturing with a camera or
perform simple data normalization depending on the threat
and training scenario. The acquired images x can be made
certifiably robust against MitM attacks δxA (crafted during
their transmission to the classifier C) by a robustifier DNN
R that runs on-the-fly within a protected environment inac-
cessible to the attacker (A5/R and A5/RC). We show also
the use of A5 for offline robustification of datasets (A5/O)
and of physical objects w (A5/P and A5/PC). The green
blocks in Fig. 1 indicate the various A5 recipes that are
used to train R and C or to create robust physical objects
or datasets.

A5 can be used in a white-box scenario where the at-
tacker has full access to the classifier C. However, since A5

uses certified bounds, it is agnostic to the specific nature of
the attack: we can certify protection against any MitM at-
tack δxA, ||δxA|| < ϵA in Fig. 1. In practice, the attacker
can use any white-, grey- or black-box algorithm to generate
the adversarial attack.

Notice that MitM attacks can be crafted while transmit-
ting the dataset to the classifier C. In a first scenario (A5/O
in Fig. 1), we assume that A5 runs offline, in a protected en-
vironment that is not accessible to the attacker, to preemp-
tively robustify the samples of the dataset. This situation is
however mostly of theoretical and little practical interest.

In a second scenario (A5/R and A5/RC in Fig. 1), we
assume a robustifier R running on the acquisition device, in
a protected environment; in this case robustification is per-
formed on-the-fly, before transmitting the data to C (when
data can be corrupted by a MitM attack) and without know-
ing the ground truth class. This case can find practical ap-
plication in several fields including automotive [7] or any-
time the capturing device communicates with another ma-

chine [11], under the assumption that R runs together with
the acquisition device in a protected environment: the at-
tacker may have full knowledge of R and C, but cannot
modify x (before its transmission) or any internal state of
the robustifier R.

In a third scenario, A5 furnishes protection against
MitM attacks by creating certifiably robust physical objects
(A5/P and A5/PC in Fig. 1). In this case, the attacker
may observe (but not interfere with) the object robustifica-
tion process, that is performed offline, in a protected en-
vironment. This is in practice a very mild constraint, as
robustification coincides with the physical creation of the
objects. Practical examples are the design of certifiably ro-
bust road signs for automotive, fonts for OCR, or even audio
signals [5, 6, 10].

Notice that, in its more general formulation (first row in
Fig. 1), A5 can also protects against physical adversarial
attacks like adversarial patches [1] stick on top of a road
sign, or adversarial sounds emitted in the environment to
attack speech to text or voice recognition systems [5,6,10],
although we do not test this case here.

Beyond illustrating the typical use scenarios of A5,
Fig. 1 also serves as a reference for the notation used in
the code that we share in https://github.com/
NVlabs/A5.

1.2. Additional results

1.2.1 FashionMNIST

For completeness, we test A5/R and A5/RC on Fashion-
MINST for ϵA = 0.1, training with ϵCA = 0.1, ϵRA = 0.1
and ϵD = 0.3. Table 1 reports the clean and certified errors,
showing that A5/R significantly boosts the clean and es-
pecially the certified errors over the CROWN-IBP baseline;
A5/RC reaches even better results.

Notice that A5/RC and ℓ∞-dist Net+MLP [12] achieve
similar clean errors, while A5 has better certified errors.
This suggest that the integration of the design philosophy
of ℓ∞-dist Net (based on ℓ∞-dist neurons that implement
1-Lipschitz functions) and A5 may lead to even bigger im-
provements in terms of certified robustness in the future.

1

https://github.com/NVlabs/A5
https://github.com/NVlabs/A5

Recipe Training time Run time

A5

Threat model / Training notation / Usage and notes. General framework, it encompasses all the following recipes.

A5/O

Threat model. Robustify a dataset (offline) against white/black box, MitM attacks.
Training notation. w: dataset. x: normalized dataset.
Usage and notes. No practical use, apart from studying A5. Use the legacy classifier C.

A5/R

A5/RC

Threat model. Robustify acquired data on-the-fly (using a robustifier R) against white/black box, MitM attacks.
Training notation. w: dataset. x: normalized dataset.
Usage and notes. Acquired data x are passed to the robustifier R on-the-fly. A5/R uses the legacy classifier C, A5/RC retrains it.

A5/P

A5/PC

Threat model. Robustify physical objects (offline) against white/black box, MitM attacks against the acquired images of the same objects.
Training notation. w: physical objects. x: normalized acquired images.
Usage and notes. Acquired data x are passed to the robustifier R on-the-fly. A5/R uses the legacy classifier C, A5/RC retrains it.

Figure 1. The first row is a schematic representation of the full A5 framework. It allows the robust augmentation of both physical objects
w and acquired data x to make them certifiably robust against MitM and physical (not tested here) adversarial attacks. The remaining rows
illustrate the A5 recipes tested in our paper. The ground truth class is always known at training time, whereas it is unknown at run time.

Algo Notes Error [certified error]
CROWN-IBP [13] From [12] 15.69% [21.99%]
CROWN-IBP [13] Ours, ϵCA = 0.1 15.11% [22.92%]

ℓ∞-dist Net+MLP [12] 12.09% [20.77%]
A5/R ϵRA = 0.1, ϵD = 0.3 14.27% [15.75%]
A5/RC ϵRA = 0.1, ϵD = 0.3 11.41% [15.53%]

Table 1. Error and certified errors on FashionMNIST, ϵA = 0.1.

1.2.2 Tinyimagent

Large dataset are challenging for all the existing defenses.
On TinyImageNet we got large improvements for A5/O,
smaller ones for A5/RC (see Table 2) after 3 days of train-
ing, while the loss is still decreasing. We beat the state-of-
the-art, but we believe that the classification landscape of C

is not regular enough: A5 exploits the gradient to find ad
hoc solutions with class specific patterns (see Fig. 2, com-
pare with the more regular defensive perturbations in Fig. 3
in the main paper). This is indicative of the fact that finding
a general, regular defensive signal is hard for the robusti-
fier R. More research is needed to handle large datasets and
leverage A5 at best.

1.3. Training recipes and network architectures

1.3.1 MNIST, classifier architecture

For the MNIST classifier C, we adopt a neural network
with the very large architecture described in the IBP [4] and
the CROWN-IBP [13] papers that is also implemented (and
shared) in auto LiRPA [8, 9].

Method Error, ϵD = 16/255

CROWN-IBP 75.33 [80.39 / 84.80]

A5/O 18.14 [21.24 / 25.08]
A5/RC 71.50 [75.19 / 78.54]

Table 2. Results on Tinyimagenet, for ϵCA = 1/255. We report the
clean error [PGD error / verified error].

Figure 2. Robustification on tinyimagenet with A5/O (first row)
and A5/RC, for ϵD = 16/255. The left panel is the original
image, the central one is robustified with the augmentation signal
in the right panel.

1.3.2 MNIST, classifier training with CROWN-IBP

For training our CROWN-IBP classifiers, we follow the in-
structions reported in the CROWN-IBP [13] paper, apart
from some minor details like the scheduling of the learn-
ing rate or the annealing of the training attack magnitude
that we change as follows.

For training attack magnitudes ϵCA < 0.3, we train
with batch size 100 for 100 epochs with an initial learn-
ing rate of 0.001, decreased at epochs 25 and 42 by a 10×
factor. We use a SmoothedScheduler (as implemented in
auto LiRPA [8, 9]) with starting epoch 3, length 18 epochs
and mid = 0.3 to increase the value of ϵCA during train-
ing. The worst case margins are computed in all cases us-
ing the mixed CROWN-IBP bounds [13]. For ϵCA >= 0.3,
we use batch size 256 and 200 epochs, initial learning rate
set to 0.0005 and decreased by a 10× factor at epochs 130
and 190, and a SmoothedScheduler to increase ϵCA starting
at epoch 10, lasting for 50 epochs and with mid = 0.3. We
use RMSprop as optimizer.

1.3.3 MNIST, robustifier architecture and A5 training
schedules

Our robustifier R for MNIST is a tiny convolutional net-
work that takes a 1 × 28 × 28 image in input, processes it
with a convolutional layer with 32 3 × 3 filters with stride
1 and padding 1, a ReLU, and a second convolutional layer

ϵRA = ϵA ϵD ϵCA = 0.0 ϵCA = 0.1 ϵCA = 0.2 ϵCA = 0.3 ϵCA = 0.4

0.1 0.05 88.65 [88.65, 88.67] 1.05 [1.88, 4.00] 1.08 [1.62, 2.28] 1.21 [1.93, 2.76] 1.58 [2.28, 2.88]
0.1 0.10 88.65 [88.65, 88.68] 1.07 [1.59, 3.20] 1.06 [1.44, 1.82] 1.03 [1.70, 2.24] 1.53 [2.13, 2.45]
0.1 0.20 88.65 [88.65, 88.66] 1.09 [1.43, 2.32] 1.01 [1.34, 1.64] 1.00 [1.44, 1.83] 1.27 [1.62, 2.06]
0.1 0.30 88.65 [88.65, 88.65] 1.01 [1.31, 2.10] 0.99 [1.23, 1.51] 1.03 [1.29, 1.59] 1.25 [1.53, 1.88]
0.1 0.40 88.65 [88.65, 88.65] 1.00 [1.30, 1.94] 0.98 [1.13, 1.44] 1.01 [1.24, 1.54] 1.30 [1.47, 1.93]

0.3 0.05 88.65 [88.65, 88.67] 3.43 [9.24, 12.41] 1.48 [5.77, 8.29] 1.63 [5.63, 7.78] 1.93 [5.53, 6.78]
0.3 0.10 88.65 [88.65, 88.66] 1.74 [5.44, 8.15] 1.29 [4.13, 6.46] 1.49 [4.23, 6.19] 2.09 [4.50, 5.32]
0.3 0.20 88.65 [88.65, 88.65] 0.98 [2.26, 5.78] 1.23 [2.34, 4.03] 1.39 [2.55, 3.96] 1.71 [3.03, 3.77]
0.3 0.30 88.65 [88.65, 88.66] 0.94 [1.49, 3.45] 1.11 [1.54, 2.44] 1.40 [2.18, 3.02] 1.56 [2.39, 2.98]
0.3 0.40 88.65 [88.65, 88.65] 0.94 [1.26, 2.41] 1.03 [1.27, 1.90] 1.15 [1.84, 2.70] 1.54 [2.02, 2.58]

Table 3. Error on clean data and (within brackets) under au-
toattack [2, 3] and verified, for MNIST, A5/RC, under attack
ϵA = {0.1, 0.3}. During training we use ϵRA = ϵA, and no data
augmentation. Comparison with Table 5 in the main paper demon-
strates the benefit of using data augmentation.

with 1 5 × 5 with stride 1 and padding 2 filter to produce
the single channel, 28× 28 output z.

To train R with A5/R on MNIST, given a pretrained (ro-
bust) classifier C, we use 50 epochs, batch size 256, initial
learning rate 0.0005, whereas ϵRA and ϵD are kept constant
during the entire training process.

To fine tune R and C with A5/RC on MNIST, given a
pretrained (robust) classifier C and a pretrained roustifier R,
we use 100 epochs and a fixed learning rate equal to 0.0005;
ϵRA and ϵD are kept constant during the entire training pro-
cess. The batch size is 512 when data augmentation is used,
256 otherwise (see 1.3.4).

In all cases, we use RMSprop as optimizer.

1.3.4 Augmentation helps robustification by prevent-
ing overfitting

In the case of MNIST, A5/RC, data augmentation (image
random shifts by max 4 pixels and random rotation by max
10 degreees) leads to better robustification performances.
Table 3 shows the clean, autoattack and certified errors for
A5/RC with no augmentation on MNIST; these metrics are
clearly inferior to the ones reported in Table 5 in the main
paper, showing the importance of using data augmentation.

Our interpretation of this result is that augmentation
prevents overfitting, that is significant at least in case of
MNIST where errors are small. This is further confirmed
by the analysis of the training curves, where we observe the
training error decreasing while validation goes up during
training with A5/RC without any data augmentation. The
benefit of using data augmentation to train an MNIST ro-
bust classifier through CROWN-IBP or when using A5/R
is inferior or not present at all, probably because these algo-
rithms achieve larger errors and overfitting is less likely.

1.3.5 CIFAR10, classifier architecture

For the CIFAR10 classifier C, we adopt a neural network
with the very large model architecture described in the
IBP [4] and the CROWN-IBP [13] papers and implemented
in auto LiRPA [8,9]. We do not train our own classifier with

CROWN-IBP — instead, we use the pretrained model dis-
tributed in https://github.com/huanzhang12/
CROWN-IBP.

1.3.6 CIFAR10, robustifier architecture and A5 train-
ing schedules

Our robustifier R for CIFAR10 is a small convolutional
DNN with 3 convolutional layers with 64 × 5 × 5 filters
with stride 1, padding 2, 64 × 5 × 5 filters with stride 1,
padding 2, and 3 × 5 × 5 filters with stride 1, padding 2,
with ReLU activations between them. The robustifier takes
a 3×32×32 image in input and produces in output a vector
z of the same size.

To train R on CIFAR10, given the aforementioned pre-
trained (robust) classifier C, we use 100 epochs, batch size
256, learning rate 0.0005, whereas ϵRA and ϵD are kept con-
stant during the entire training process.

To fine tune R and C with A5/RC on CIFAR10, given a
pretrained (robust) classifier C and a pretrained robustifier
R, we use 200 epochs, batch size 512, learning rate 0.0005,
whereas ϵRA and ϵD are kept constant during the entire train-
ing process.

In both cases, we use the standard data augmentation
procedure for CIFAR10 images (random horizontal flips,
random crop by 4 pixels max, image normalization), and
RMSprop as optimizer.

1.3.7 Additional notes for training with A5/RC

Setting the right learning rate is fundamental for A5/RC.
If the learning rate is too small, the C/R pair do not move
much away from the initial condition, falling into a local
minimum of the cost function and achieving little gain with
respect to the optimal R computed for the base C. If the
learning rate is too large, training is unstable. With the right
learning rate, we observe a small, initial decrease of the
performances of the C/R pair, which we believe to be as-
sociated with exiting from the local minimum, but training
later progresses towards much better clean and verified er-
ror rates. To train with A5/RC, we also found important to
use a sufficiently large batch size to guarantee the stability
of the process.

Some of the results reported in the main paper suffer in-
deed from a sub-optimal choice of the learning rate (and po-
tentially other training parameters). For instance, A5/RC
on CIFAR10 achieves far from optimal results for small val-
ues of ϵCA. For simplicity (adoption of the same training
parameters for all the metrics in the same Table) we de-
cided to leave these metrics in the Tables without fine tun-
ing, since the configurations affected by this issue are not
the optimal ones. Results can clearly improve after better
training parameter tuning, but the presence of these metrics

in the Table highlights the importance of a good choice of
the training parameters.

1.3.8 FashionMNIST

For FashionMNIST, we use the same architectures and re-
cipies used for C and R in MNIST.

1.3.9 Tinyimagenet

For Tinyimagenet, we start from the legacy classifier trained
with CROWN-IBP that can be downloaded following the
instructions provided in https://github.com/
Verified-Intelligence/auto_LiRPA/blob/
master/doc/src/examples.md#certified-
adversarial - defense - on - downscaled -
imagenet - and - tinyimagenet - with - loss -
fusion. To train the robustifier R and fine tune the classi-
fier C, we use 1500 epochs, batch size 16, initial learning
rate 0.0001 multiplied by a 0.8× factor at epochs 500, 750,
1000, and 1250, ϵRA = 1.1/255 and ϵD = 16/255.

1.3.10 Optical Character Recognition, classifier archi-
tecture

For OCR, we use a classifier C with 4 convolutional layers
(64×5×5 filters with stride 2, padding 2, 32×5×5 filters
with stride 2, padding 2, 16 × 3 × 3 filters with stride 2,
padding 1, 8 × 3 × 3 filters with stride 2, padding 1) with
ReLU activations, followed by 1 fully connected layer with
512 features in input and output, ReLU activations and a
last fully connected layer with 512 features in input and 62
in output. The input of C is a 3×128×128 image, whereas
the output is the vector of 62 logit values.

1.3.11 Optical Character Recognition, classifier train-
ing with CROWN-IBP

To train a traditional, non robust classifier C, we perform
1666 update steps using RMSprop as optimizer. In each up-
date step we process a batch with 672 characters (see Fig. 4
in the main paper). The learning rate is initially set to 0.001
and decreased by a factor 10× at steps 833 and 1250. Train-
ing images x are obtained by simulating the acquisition of
the (robust) characters (first row in Fig. 4 in the main paper)
as x+ δxD = A(w+ δwD)1, where A includes: a random
crop of max 5 pixels; a random rotation of max 5 degrees;
a random perspective distortion with max distortion scale
0.25 (accordingly to the pytorch implementation of trans-
forms.RandomPerspective); adding white Gaussian noise
with standard deviation in a random range from 0.2/255 to

1Notice that δxD and δwD are null when training a standard or a
robust CROWN-IBP classifier.

https://github.com/huanzhang12/CROWN-IBP
https://github.com/huanzhang12/CROWN-IBP
https://github.com/Verified-Intelligence/auto_LiRPA/blob/master/doc/src/examples.md#certified-adversarial-defense-on-downscaled-imagenet-and-tinyimagenet-with-loss-fusion
https://github.com/Verified-Intelligence/auto_LiRPA/blob/master/doc/src/examples.md#certified-adversarial-defense-on-downscaled-imagenet-and-tinyimagenet-with-loss-fusion
https://github.com/Verified-Intelligence/auto_LiRPA/blob/master/doc/src/examples.md#certified-adversarial-defense-on-downscaled-imagenet-and-tinyimagenet-with-loss-fusion
https://github.com/Verified-Intelligence/auto_LiRPA/blob/master/doc/src/examples.md#certified-adversarial-defense-on-downscaled-imagenet-and-tinyimagenet-with-loss-fusion
https://github.com/Verified-Intelligence/auto_LiRPA/blob/master/doc/src/examples.md#certified-adversarial-defense-on-downscaled-imagenet-and-tinyimagenet-with-loss-fusion
https://github.com/Verified-Intelligence/auto_LiRPA/blob/master/doc/src/examples.md#certified-adversarial-defense-on-downscaled-imagenet-and-tinyimagenet-with-loss-fusion

25/255; a random blur with σ in the range [0.01, 1.0] pix-
els; and color jittering (with brightness, contrast, saturation
and hue parameters equal to 0.1, accordingly to the pytorch
implementation of transforms.ColorJitter).

To train a robust classifier C, we initialize the weights of
C with those of the previously trained non robust classifier,
then we use CROWN-IBP for an additional 2500 training
steps. Each training step uses a batch of size 128. We use
a learning rate 0.0005 that is decreased by a factor 10× af-
ter 1500 and 2000 steps, and increase ϵCA from 0.0 to 0.2 in
2000 training steps, using a SmoothedScheduler (as imple-
mented in auto LiRPA [8, 9]) with mid = 0.3.

1.3.12 Optical Character Recognition, A5 training
schedules

To compute the robustified characters w+δwD wth A5/P ,
we start from a classifier C trained with CROWN-IBP. We
run A5/P for 2500 epochs, where in each epoch we process
10 batches each of size 6. We use a learning rate 0.005 that
is decreased by a factor 10× after 1500 and 2000 epochs,
whereas ϵCA is fixed to 0.125 for the entire training process.
We use ϵD = 1 to allow the pixels to be changed from black
to white (or viceversa).

To train with A5/PC, we start from a classifier C trained
with CROWN-IBP. We run A5/P for 10500 epochs, where
in each epoch we process 10 batches each of size 6. We use
a learning rate 0.005 that is decreased by a factor 10× after
6000 and 8000 epochs, whereas ϵCA is fixed to 0.125 for the
entire training process. We use ϵD = 1 to allow the pixels
to be changed from black to white (or viceversa).

As the reader may have noticed, the adoption of the cor-
rect training schedule is generally important to guarantee
the convergence of A5 to an effective solution.

1.4. Quantification of robustification on image qual-
ity

In many applications, the raw output of the acquisition
device (and therefore its visual appearance) is not of inter-
est for the final user — this is for instance the case of a
classifier C employed in an automotive or robotic vision
system. On the other hand, for those applications where
the images in output from the acquisition device are poten-
tially consumable by human observers, it is legit asking if
and how image robustification through A5/O, A5/R, and
A5/RC affects the image quality. A5 is already created by
design such that the L∞ norm of the defensive perturbation
does not exceed ϵD (i.e., ||δxD||∞ < ϵD), thus the user
can modulate the worst case image degradation by setting
ϵD. However, we do not know how deeply A5/O, A5/R,
and A5/RC leverage the available perturbation space while
computing δxD. To quantify it, we measure the average
Peak Signal to Noise Ratio (PSNR) between the original x

Algo ϵD Worst case ϵRA = 4/255 ϵRA = 8/255 ϵRA = 16/255

A
5
/
O

4/255 36.09dB 47.04 46.40 44.88
8/255 30.07dB 40.74 39.95 38.51

16/255 24.05dB 34.56 33.90 32.26
32/255 18.03dB 28.29 27.74 26.12

A
5
/
R

4/255 36.09dB 36.27 36.27 36.35
8/255 30.07dB 30.31 30.30 30.35

16/255 24.05dB 24.47 24.40 24.45
32/255 18.03dB 18.75 18.70 18.61

A
5
/
R
C

4/255 36.09dB 36.27 36.27 36.35
8/255 30.07dB 30.27 30.27 30.35

16/255 24.05dB 24.34 24.34 24.34
32/255 18.03dB 18.57 18.56 18.52

Table 4. Average PSNR of the robustified x+δxD with respect to
the vanilla x for CIFAR10 images and robustification with A5/O,
A5/R, and A5/RC and different settings (the same used for Table
2 in the main paper). The PSNR reported in the third column rep-
resents the worst case, where each pixel value is either increased
or decreased by ϵD exactly.

and the robustified x + δxD image for the CIFAR10 ex-
periment reported in Table 2 in the main paper. The PSNR
values are reported in Table 4.

This Table highlights a difference in the images robusti-
fied by A5/O and those output by A5/R and A5/RC. In
this first case, the image degradation is proportional to ϵD,
as expected, but it is far from the worst case. In other words,
A5/O identifies local optima where many pixel values are
changed by less than ϵD. On the other hand, both A5/R and
A5/RC are characterized by PSNR values that are close to
the worst case ones, meaning that the pixel values are often
changed by either +ϵD or −ϵD. Such observation is con-
sistent with the images shown in Fig. 3 in the main paper,
where δxD shows a sparse structure for A5/O, while it is
characterized by large, constant value areas in case of A5/R
and A5/RC.

Overall, A5/RC provides a more effective robustifica-
tion than A5/O; this is achieved at the cost of a larger image
degradation, anyway controlled by ϵD.

1.5. Resources

For training and testing A5 we use either an HP Z8
G4 Workstation equipped with an Intel Xeon Gold 6128
@ 3.40GHz CPUs, RAM 48G and two NVIDIA GeForce
2080 Ti GPUs, each with 12G RAM, or an NVIDIA DGX-
1 equipped with Intel Xeon E5-2698 v4 @ 2.20GHz CPUs,
RAM 48G, and 8 NVIDIA Tesla V100-SXM2 GPUs, each
with 32G RAM. All training and testing are done using a
single GPU, running multiple experiments in parallel on
the same machine when possible. Typical training times
are in the order of few hours to for robust CROWN-IBP
classifiers on MNIST, CIFAR10, FashionMNIST; A5/O,
A5/R and A5/RC take up to one day of training on the
same data, while training on Tinyimagenet requires multi-
ple days. Typical training times for A5/P and A5/PC on

the 62 characters dataset are again in the order of few hours.

References
[1] Tom Brown, Dandelion Mane, Aurko Roy, Martin Abadi,

and Justin Gilmer. Adversarial patch. 2017. 1
[2] Francesco Croce and Matthias Hein. Reliable evalua-

tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In ICML, 2020. 3

[3] Francesco Croce and Matthias Hein. Mind the box: l1-apgd
for sparse adversarial attacks on image classifiers. In ICML,
2021. 3

[4] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth,
Rudy Bunel, Chongli Qin, Jonathan Uesato, Relja Arand-
jelovic, Timothy Mann, and Pushmeet Kohli. On the effec-
tiveness of interval bound propagation for training verifiably
robust models, 2018. 2, 3

[5] Sonal Joshi, Jesús Villalba, Piotr Żelasko, Laureano Moro-
Velázquez, and Najim Dehak. Study of pre-processing de-
fenses against adversarial attacks on state-of-the-art speaker
recognition systems. IEEE Transactions on Information
Forensics and Security, 16:4811–4826, 2021. 1

[6] Yao Qin, Nicholas Carlini, Ian J. Goodfellow, G. Cottrell,
and Colin Raffel. Imperceptible, robust, and targeted ad-
versarial examples for automatic speech recognition. ArXiv,
abs/1903.10346, 2019. 1

[7] Derui Wang, Chaoran Li, Sheng Wen, Surya Nepal,
and Yang Xiang. Man-in-the-middle attacks against ma-
chine learning classifiers via malicious generative models.
IEEE Transactions on Dependable and Secure Computing,
18(5):2074–2087, sep 2021. 1

[8] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-
Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin, and
Cho-Jui Hsieh. Automatic perturbation analysis for scalable
certified robustness and beyond. arXiv: Learning, 2020. 2,
3, 5

[9] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman
Jana, Xue Lin, and Cho-Jui Hsieh. Fast and complete: En-
abling complete neural network verification with rapid and
massively parallel incomplete verifiers. In International
Conference on Learning Representations, 2021. 2, 3, 5

[10] Hiromu Yakura and Jun Sakuma. Robust audio adversarial
example for a physical attack. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI-19, pages 5334–5341. International Joint Con-
ferences on Artificial Intelligence Organization, 7 2019. 1

[11] Jianfei Yang, Han Zou, and Lihua Xie. Robustsense: De-
fending adversarial attack for secure device-free human ac-
tivity recognition. ArXiv, abs/2204.01560, 2022. 1

[12] Bohang Zhang, Tianle Cai, Zhou Lu, Di He, and Liwei
Wang. Towards certifying l-infinity robustness using neural
networks with l-inf-dist neurons. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 12368–12379. PMLR,
18–24 Jul 2021. 1, 2

[13] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal,
Robert Stanforth, Bo Li, Duane Boning, and Cho-Jui Hsieh.

Towards stable and efficient training of verifiably robust neu-
ral networks. In International Conference on Learning Rep-
resentations, 2020. 2, 3

	. Supplementary
	. Threat models and usage scenarios
	. Additional results
	FashionMNIST
	Tinyimagent

	. Training recipes and network architectures
	MNIST, classifier architecture
	MNIST, classifier training with CROWN-IBP
	MNIST, robustifier architecture and A5 training schedules
	Augmentation helps robustification by preventing overfitting
	CIFAR10, classifier architecture
	CIFAR10, robustifier architecture and A5 training schedules
	Additional notes for training with A5/RC
	FashionMNIST
	Tinyimagenet
	Optical Character Recognition, classifier architecture
	Optical Character Recognition, classifier training with CROWN-IBP
	Optical Character Recognition, A5 training schedules

	. Quantification of robustification on image quality
	. Resources

