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Figure 1. VIVE3D generalization to new identities. The benefits from decomposing the inversion of the input into an identity latent and
a set of offsets unlock applications of face/motion re-targeting with minimal effort. This is possible due to our novel personalized generator
that can be trained on a specific person’s identity and then applied to edit an unseen video. We show two examples: In example (a), we use
a person (top row) to invert and fine-tune the generator, and we determine the video offsets based on this video sequence. The bottom row
determines the target frames as well as the face location and angles. For example (b), we use a personalized generator (top left), but the
target frames, angles, as well as motion, stem from a distinct video, driving the motion of the target person.

1. Additional Results

1.1. Supplementary Video

Please see our supplementary video (on the project web-
page) for video sequences illustrating our proposed method
and a set of results demonstrating the unique capabilities of
our technique as well as comparisons to related methods.

1.2. Experimental Edits

We showcase some additional experimental edits to illus-
trate the generalization abilities of our approach for general-
purpose video editing. For example, we are able to use two
completely disjoint videos of different subjects and achieve
reasonable results at compositing them. We show in Fig-
ure 1 two instances of such applications: On the left (Fig-
ure 1 (a)), we use one personalized Generator with its "de-
fault" person latent wID, and a stack of video offsets encod-
ing a sequence of face motions. We then compose these
with a different body by running our inset optimization,
using the target video frames and head angles from that
particular video. On the right (Figure 1 (b)), we use the
encoded face motion from the target video, projecting the
motion onto a different person’s face, thereby essentially
replacing the head in the target video. Note that in order

to achieve plausible results for these instances, we need to
copy head and neck due to the slight differences in light-
ing between the source and target faces. Further, the seg-
mentation masks need to be considered carefully and be big
enough, e.g. in the right result, the hair sticking out from the
source person’s head needs to be covered by inpainting with
background color during the inset optimization in order to
achieve a reasonable result. Otherwise, the optimization
will add extra hair and change the hairstyle. We observe that
VIVE3D generates realistic results of placing the first per-
son’s head on the second person’s body that are temporally
and spatially consistent and follow the target frame motion.
This is possible because of our proposed design (personal-
ized generator, separate identity, and offset latents) which
makes VIVE3D unique compared to prior work. It is worth
noting that when the source and target videos have different
light conditions then the results might have different light-
ing between the body and the face. This is because we do
not explicitly tackle this problem in our architecture and
hence lighting is baked in the final generated/edited head
before it is placed on top of the new body. We identify the
problem of better lighting transfer as an avenue for future
work.
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Figure 2. VIVE3D Ablation Study. Our proposed approach VIVE3D (2nd column) with all the proposed components demonstrates better
identity preservation, fixes the spatial misalignment between the face and neck when rendered from a novel view and better captures the
fine-level details of the face and results in high-fidelity faithful renders of the person from new views.

1.3. Ablation Study

To evaluate the impact of each module we conduct ab-
lation studies and report our quantitative and qualitative re-
sults in Table 4 of the main paper and Figure 2 of the supple-
mentary respectively. Given a video of a person talking (1st

column) , we demonstrate our complete approach when ren-
dering the output video from a new viewpoint (1st column).
In the next 4 columns of results, we strip one component at
a time and observe different performance quality drops. For
example, if we do not fine-tune the generator it is clear that
the identity of the individual is not properly preserved (3rd

column). If we remove the flow correction module which
is a key contribution of our approach, we observe that the
face and the neck are not well aligned which makes the re-
sults seem unnatural (4th column). The impact of the flow
correction module is demonstrated also in Figure 3 and dis-
cussed in detail in the supplementary video. If we strip the
regularization (5th column), we remove the joint latent wID

and treat each target face in the initial inversion separately.
This means we don’t constrain the individual latents to stay
close to the common latent. We can see that this leads to a
deterioration in the inversion quality of the video frames and
produced artifacts, as the inverted latents no longer share
information, and there is no constraint on the projected lo-
cation in latent space. Finally, if we were to only perform
single-frame inversion rather than multi-frame, we also ob-
serve a significant drop in fidelity (6th column), which indi-
cates that the proposed approach of performing multi-frame
fidelity is beneficial as it better captures the identity and the
fine details of the face.

1.4. Qualitative Results of Method Comparisons

We provide a qualitative comparison to related methods
of GAN-based video editing, Stitch it in Time (StiiT) [12]
and VideoEditGAN (VEG) [13]. First, we discuss some of
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Figure 3. View Adjustment Additional Results. We illustrate the
problem arising when attempting to composite a changed view of
a person’s head on top of the original body. After cropping (a) and
inversion (b), we perform face editing (c) and change the camera
viewpoint to an unseen angle (d). Replacing the face in the original
frame with this edit yields poor quality (bottom center) even for
small angular changes because the rotated face is in the wrong
location with respect to the body. We address this by estimating
the optical flow (e) between the face crop and the edit and use the
flow direction to correct the location of the reference face based
on the prospective inset (f). This allows us to composite the edited
face into the frame in a natural-looking fashion (bottom right).

the differences between our proposed method and the re-
lated work to establish the parameters of our comparison.

• StiiT and VEG, which is closely related to StiiT, both
use a StyleGAN2 backbone which outputs high quality
images at 1024×1024px resolution, whereas our back-
bone’s (EG3D) output resolution is 512×512px (obtained
by super-resolution given 128×128px inputs), providing
3D-awareness at the expense of slightly inferior image
quality to classic StyleGAN2. In order to compare quan-
titatively, we downsample all results generated by StiiT
and VEG to 512×512px, unless we compare at the full
video resolution, in which case the output of the respec-
tive generator is already resampled to fit the resolution of
the original face crop in the video frame.
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Figure 4. Comparison to related work on age editing. Due to
the distinctly different InterfaceGAN editing directions, we hand-
picked the edit strength for the respective latent space edits to
showcase a similar effect in aging the target person. Our technique
yields results that are at least on par with the previous StyleGAN2-
based editing techniques (bottom two rows).

• StiiT and VEG rely on prior work for a reliable encod-
ing framework, e4e [10], to yield good and coherent in-
versions, whereas we implemented an optimization strat-
egy to obtain per-frame inversions. Implementing an en-
coding strategy for EG3D was outside the scope of our
project, but would be an interesting topic for future en-
deavors. We expect that using an encoder would lower
the embedding quality, but improve computation speeds.

• StiiT and VEG fine-tune their generator on all video
frames simultaneously, thus achieving very good coher-
ence to the input. In contrast, we fine-tune on a select
few target faces, yielding a more generalizable generator,
which, in consequence, is not optimized to replicate the
video frame-by-frame.

• Like our approach, StiiT relies on InterfaceGAN [11] for
discovering and applying latent space editing directions
for many of their results. VEG shows their results us-
ing edits based on StyleClip [9]. To compare with their
method, we adapted their code to also allow edits with In-
terfaceGAN – analogous to StiiT– before applying their
temporal consistency strategy. Note that the discovered
directions in StyleGAN2 and EG3D latent space do not
yield identical results for the same attribute type and the
strength needed to apply the direction vectors is different.
We empirically chose weights to approximate the same
edit strength when comparing results.
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Figure 5. Comparison to related work on angle editing. A slight
change in angle is achieved for the related methods by applying a
yaw-changing latent space direction. Both methods fail at produc-
ing a reasonable composition given these edits (bottom two rows).
We implement a similar angle change and demonstrate that our
method creates a natural-looking composition.

We demonstrate in Figure 4 that all methods provide
plausible results for classic semantic editing problems such
as aging the target person. However, both related methods
fail to yield plausible results for angle editing. In order to
compare this task, we utilize a latent space direction discov-
ered in StyleGAN2 that allows for slight angle changes. The
comparison for these strategies is illustrated in Figure 5.
The artifacts present in these qualitative results mirror the
deterioration in quantitative scores indicated in Table 2 in
the main paper.

In Figure 6, we show a result of our multi-target inver-
sion strategy (row ((a))) compared to another single-image

Figure 6. Comparison to another 3D inversion technique. To
demonstrate the effectiveness of our Personalized Generator inver-
sion, we compare the quality of our inversion with a recent tech-
nique of 3D GAN inversion [7]. Note how the head shape and
identity correspondence deteriorate when rotating the head away
from the original pose.
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Table 1. Reconstruction Metrics. We compare the quality of our
inversion with StiiT using reconstruction metrics on a subset of
videos. We also evaluate the Fréchet Inception Distance (FID) of
inversion and edits with respect to the source video.

Reconstruction Quality Editing Quality
PSNR ↑ SSIM ↑ Fréchet Inception Distance (FID) ↓

Method INVERSION INVERSION AGE EDIT ANGLE EDIT

Marques
StiiT 36.477 0.965 10.11 18.44 21.58
VIVE3D 33.791 0.987 7.25 12.73 11.63

Obama
StiiT 34.969 0.976 3.80 16.49 17.12
VIVE3D 36.282 0.969 3.88 8.67 7.22

Dennis
StiiT 40.708 0.993 6.32 12.88 16.96
VIVE3D 40.804 0.990 4.07 8.36 8.07

SMILE- + BLOND- + YOUNG- +

Figure 7. InterfaceGAN Edits Additional Results. We show In-
terfaceGAN editing directions discovered in the latent space of the
pretrained 3D GAN by applying them to our personalized genera-
tor. The attribute edits are plausible and consistent in 3D.

3D GAN inversion [7] (row ((b))). Please zoom in to ob-
serve the degradation of head shape and loss of identity
when the head rotation diverges from the source image.

1.5. Additional Quantitative and Qualitative Re-
sults

We provide some additional quantitative metrics on in-
dividual videos shown throughout this supplementary ma-
terial. In Table 1, we analyze the reconstruction quality
and editing quality for three individual videos, showing that
our reconstruction and editing capabilities are on par with
our main competitor technique StiiT for video inversion and
editing tasks. We also analyze the inversion and editing per-
formance of VIVE3D and related methods for two distinct
videos in more detail in Table 2. We use the ArcFace [4]
metric to calculate the minimum, maximum, and average
similarity to the source video as well as the temporal dif-
ference by evaluating the metric on adjacent video frames.
The quantitative scores show that our method is superior
for both attribute and angular edits, the latter being a task at
which the previous 2D-GAN-based methods fail.

We showcase some supplemental qualitative results that
demonstrate in further examples that VIVE3D is able to (1)
apply existing latent space editing techniques such as In-
terfaceGAN [11] to generate natural-looking results (Fig-
ure 7) with performance comparable to previous 2D tech-

Table 2. Face Similarity Metrics. We evaluate the identity preser-
vation of inversion and edits based on the cosine similarity of Ar-
cFace features extracted from generated face crops with respect
to the face crops of the source video. To evaluate coherence over
time, we measure the dissimilarity between consecutive frames.

Similarity to Source ↑ Temporal Diff ↓
Method MIN MAX MEAN MIN MAX MEAN

M
ar

qu
es

Inversion
e4e 0.487 0.816 0.663 0.1 36.3 5.6
StiiT 0.720 0.877 0.820 0.1 8.6 1.3
VIVE3D 0.820 0.932 0.894 0.1 7.5 1.4

Age Edit
StiiT 0.720 0.877 0.820 0.1 8.8 1.3
VEG 0.430 0.668 0.551 0.1 11.5 1.9
VIVE3D 0.730 0.923 0.857 0.1 5.2 1.1

Angle Edit
StiiT 0.654 0.801 0.740 0.1 8.9 1.4
VEG 0.424 0.685 0.568 0.1 12.1 1.7
VIVE3D 0.762 0.899 0.849 0.1 8.1 1.1

O
ba

m
a

Inversion
e4e 0.469 0.801 0.665 0.1 44.8 5.9
StiiT 0.935 0.982 0.968 0.0 7.6 1.0
VIVE3D 0.882 0.961 0.930 0.0 2.1 0.5

Age Edit
StiiT 0.717 0.862 0.781 0.1 6.1 1.0
VEG 0.522 0.763 0.671 0.2 7.1 1.5
VIVE3D 0.758 0.903 0.850 0.1 4.0 0.8

Angle Edit
StiiT 0.668 0.827 0.753 0.0 7.8 1.3
VEG 0.771 0.874 0.840 1.0 5.9 1.2
VIVE3D 0.782 0.916 0.868 0.1 4.2 0.9

niques, (2) create plausible image compositions for diverg-
ing from the original head angle, generalizing to various
camera viewpoints given a source frame (Figure 8), (3) gen-
erate high-quality results that are temporally consistent for
combined angle and attribute editing (Figure 9), and (4)
synthesize spatially consistent results (Figure 10) even for
challenging boundary cases.
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Figure 8. Changing Camera Poses Additional Results. Our
method can freely alter the camera pose and composite the result
back with the source frame by fixing the divergence between the
source and target pose using our optical flow correction. The gen-
erated results look natural despite the static body pose.



Figure 9. Additional Qualitative Results. Given a video sequence, we process individual frames, cropping the face region to correspond
with our generator’s field of view. VIVE3D faithfully modifies several facial attributes as well as the camera viewpoint of the head crop.
Finally, we seamlessly composite the edited face with the source frame in a temporally and spatially consistent manner, while retaining a
plausible composition with the static components of the frame outside of the generator’s region. The dotted squares in the center frame
denote the reference regions for the three different camera poses in the column below.
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2. Optimization Details and Parameter Set-
tings

Our approach is implemented in Python 3.8 and uses Py-
Torch. We build our approach on the pretrained models and
the publicly available codebase of EG3D [2, 3]. During our
pipeline, we propose several optimization steps. Each of
them is relying on ADAM as an optimizer. We run all ex-
periments on a single NVIDIA A100 GPU and provide tim-
ings and hyperparameters for our various pipeline steps.

1. Generator Inversion: For the initial inversion of the
generator, we use a standard learning rate scheduler. We
also ramp down the regularization weight of of from
λwdist to λwdist_target .

Optimization hyperparameters
λL1 = 0.05 , λface = 1.0 , λLPIPS = 0.75 ,
λwdist = 0.05 , λwdist_target = 0.005 ,
initial_learning_rate = 1e-2 , num_steps = 600

Duration 3 min 33 sec (5 target images)

2. Generator Fine-Tuning: We fine-tune the weights of
the StyleGAN2 backbone of EG3D as well as the neu-
ral renderer, leaving learned weights of the Upsampling
module untouched.

Optimization hyperparameters
λL1 = 1.0 , λLPIPS = 0.3 , learning_rate = 1e-3 ,
num_steps = 300

Duration 3 min 27 sec (5 target images)

3. Video Inversion: During this optimization, we run a
frame-per-frame inversion, starting from the average off-
set of all offsets of discovered in step 1. Using this strat-
egy, we invert the first frame for init_num_steps . Each
consecutive frame is started from the previous offset and
optimized for num_steps . We provide an early stopping
criterion loss_threshold and finish the current frame
optimization in case the total loss falls below this thresh-
old.
Optimization hyperparameters
λL1 = 0.25 , λface = 1.2 , λLPIPS = 1.0 ,
λwdist = 0.01 , learning_rate = 1e-2 ,
loss_threshold = 0.25 ,
init_num_steps = 200 , num_steps = 50

Duration 19 sec (first frame), ∼4 sec/frame (consecutive
frames)

4. Optical Flow Evaluation: During this step, we evalu-
ate the flow between the source face crop and the (angle-
edited) target face to estimate the correction of the source



Figure 10. Spatial Consistency Additional Results. VIVE3D
composites images with challenging boundaries such as long hair
(left), yielding faithful hair color change results. For hard bound-
ary cases, such as matching with a static piece of hair outside the
boundary crop (right), it plausibly connects the contents of the two
images.

crop needed to achieve a plausible inset composition.
To estimate the flow, we use Farnebäck optical flow
with the following parameters: pyr_scale = 0.5 ,
levels = 8 , winsize = 25 ,
iterations = 7 , poly_n = 5 , poly_sigma = 1.2

Duration ∼0.4 sec/frame

5. Inset Optimization: In this optimization step, we can
specify sizes border_size for the width of the segmen-
tation boundary region that is optimized and edge_size

to provide an offset distance for the border from the
image boundary. We can again specify an early stop-
ping criterion border_loss_threshold to stop when
the border loss falls under this threshold, which in prac-
tice provides significant speedup.
Optimization hyperparameters
weight_foreground = 1.0 , weight_border = 2.0 ,
edge_size = 50 , border_size = 50 ,
num_steps = 150 , learning_rate = 1e-2 ,
border_loss_threshold = 0.05

Duration ∼4 sec/frame (∼16 sec/frame w/o early stop-
ping)

3. Social Impact

The ability to provide editability/customization in videos
of humans has been an active area of research over the past
few years. On one hand, it can have key applications in pro-
viding people the ability to express themselves in different
ways (e.g., the ability to change hair color, add glasses, etc)
during video calls, or more broadly in how they interact in
the digital world. At the same time, such techniques intro-
duce use cases for potentially malicious use that are worth
discussing. For example, the ability to replace someone’s
face in a video from another person resembles deepfakes
and could be used by bad actors. While the results such
as what is shown in Figure 1 are still not at the level that
would be perceived as indistinguishable from an original
video this is an important conversation to be had regardless.
We encourage the interested reader to refer to concurrent
work [1, 5, 6, 8] for deep fake detection to discover edited
videos.
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