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Table 1. Benchmark the searched encoders with SOTA encoder
designs in terms of measured latency on Quest 2/Pixel 3 and ren-
dering MSE across different 10 identities and 3 view directions.

Iden.

Model EEM EEM
-ch50

EEM
-res50

AVE-L
(Ours)

AVE-M
(Ours)

AVE-S
(Ours)

MFLOPs 2930.77 765.38 747.44 605.14 306.93 174.75

Lat. (ms)
Quest 2 12.48 10.02 9.40 4.59 3.26 2.47

Lat. (ms)
Pixel 3 483.47 164.27 117.27 70.53 52.61 37.78

S1
Front 8.48 8.54 11.27 6.91 7.46 7.54
Left 8.11 8.36 10.84 6.80 7.29 7.41

Right 8.04 8.07 10.65 6.45 7.01 7.03

S2
Front 15.70 16.08 22.77 14.63 15.10 16.21
Left 14.52 15.08 21.08 13.74 14.56 15.22

Right 17.51 18.00 24.82 16.17 16.31 17.53

S3
Front 12.03 12.85 15.53 10.91 11.42 12.25
Left 12.00 12.88 14.96 10.93 11.48 11.99

Right 12.73 13.62 16.45 11.41 11.83 13.05

S4
Front 17.42 18.71 21.40 15.62 16.33 16.98
Left 19.12 20.41 23.22 16.80 17.57 18.01

Right 17.47 18.72 21.27 15.56 16.08 16.94

S5
Front 7.01 7.81 15.95 5.78 5.94 6.06
Left 7.32 8.05 16.09 6.22 6.33 6.45

Right 7.10 7.93 15.45 5.92 6.03 6.24

S6
Front 19.52 20.77 25.05 17.34 18.39 19.08
Left 26.28 26.47 33.76 22.27 24.33 24.34

Right 15.89 16.73 22.25 14.27 15.41 15.55

S7
Front 19.52 20.77 25.05 17.34 19.08 18.39
Left 10.03 10.23 17.00 9.00 9.39 9.43

Right 10.14 10.16 18.26 9.02 9.31 9.54

S8
Front 8.44 12.32 18.32 6.22 6.62 7.61
Left 8.94 12.98 18.57 7.19 7.03 8.12

Right 8.39 12.15 18.46 6.55 6.61 7.56

S9
Front 4.12 4.72 5.97 3.46 3.75 3.96
Left 4.46 4.61 5.82 3.71 4.03 4.00

Right 6.63 7.09 9.06 5.31 5.83 6.15

S10
Front 10.52 11.97 12.75 9.37 9.79 9.94
Left 10.38 11.75 12.40 9.25 9.75 9.89

Right 11.01 12.57 12.75 9.89 10.18 10.33

Avg. - 11.96 13.01 17.24 10.47 11.01 11.43

1. More Quantitative Rendering Results

Rendering MSE across all identities. In addition to the
6 identities evaluated in Sec. 5.2 of the main text, we further

validate our AVE-NAS searched encoders across another 4
identities and summarize all the rendering MSE in Tab. 1. We
can observe that our searched encoders consistently achieve
better MSE-efficiency trade-offs across identities as com-
pared to the SOTA EEM encoder [3] based on the measure-
ment on Meta Quest 2, e.g., our searched AVE-L achieves a
2.72× speed-up over EEM while also reducing the rendering
MSE by 1.49 on average and our AVE-S achieves a 5.05×
speed-up with an average MSE reduction of 0.53.

Rendering LPIPS and FID: We also measure the ren-
dering quality in terms of LPIPS [6] and FID [2] (the lower
the better), which better aligns with human perception. We
benchmark our AVE-L model with the baseline EEM model
across six identities. As shown in Tab. 2, our AVE-L model
still outperforms the baseline EEM model, e.g., a 0.39 FID
reduction in average with 2.72× speed-up on Quest 2, indi-
cating that our method can consistently achieve better ren-
dering quality in terms of human perception.

Table 2. Benchmark our AVE-L model with the baseline EEM
model across six identities in terms of the achieved LPIPS and FID.

Identity
Front View Left View

LPIPS ↓ FID ↓ LPIPS ↓ FID ↓
Gabe Auto-CARD Gabe Auto-CARD Gabe Auto-CARD Gabe Auto-CARD

S1 0.0740 0.0457 4.121 2.506 0.0503 0.0459 3.382 2.821
S2 0.0707 0.0694 2.969 2.954 0.0713 0.0701 3.010 2.864
S3 0.0711 0.0667 2.260 2.107 0.0693 0.0650 1.857 1.805
S4 0.0669 0.0651 2.772 2.730 0.0666 0.0630 2.570 2.367
S5 0.0709 0.0604 5.061 4.355 0.0754 0.0651 3.524 3.119
S6 0.0707 0.0615 3.437 2.930 0.0666 0.0620 2.869 2.595

2. Detailed Experiment Setup

Training settings. We follow the same setting in [4]
to train the decoders, which is fixed during encoder search
and training. For encoder search and training, we adopt
the same training schedules for architecture parameters and
model weights. In particular, we search/train the encoder
for 50K/100K steps, respectively, using an Adam optimizer
with a batch size of 16 and an initial learning rate of 1e-3
decayed by 0.1 every 40K steps. The weighted coefficients
for Llatent, Lgaze, Lgeo,Ltex, Lkpt, and Lren in Eq. (4)
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Table 3. Visualize the operators, channel scales, and input resolutions of searched encoders (zoom-in for better view).

Model Input
Resolution View Searchable

Factor
Feature Extraction

Backbone
Branch MFLOPs

(Total)Latent Code Gaze Key Point

AVE-L 80

Left Eye
Operator [’fuse-mb’, ’conv’] [’fuse-mb’, ’skip’, ’conv’, ’conv’, ’fuse-mb’, ’fuse-mb’] [’conv’, ’fuse-mb’, ’conv’, ’fuse-mb’, ’conv’, ’conv’] [’fuse-mb’, ’skip’]

605.14

Channel Scale [0.53125, 0.5] [0.53125, 0.5, 0.53125, 0.5, 0.75, 0.75] [1.0, 0.5, 0.5, 0.5, 0.9375, 0.9375] [0.5, 0.5]
MFLOPs 46.08 43.67 35.12 54.85

Right Eye
Operator [’fuse-mb’, ’conv’] [’conv’, ’skip’, ’conv’, ’skip’, ’conv’, ’fuse-mb’] [’conv’, ’conv’, ’conv’, ’conv’, ’conv’, ’fuse-mb’] [’fuse-mb’, ’skip’]

Channel Scale [0.8125, 0.875] [0.5, 0.5, 0.5, 0.5, 0.75, 1.0] [1.0, 0.5, 0.6875, 0.5, 0.75, 0.9375] [0.5, 0.5]
MFLOPs 101.12 69.92 34.13 54.85

Mouth
Operator [’fuse-mb’, ’fuse-mb’] [’conv’, ’conv’, ’conv’, ’fuse-mb’, ’fuse-mb’, ’fuse-mb’] - -

Channel Scale [0.53125, 0.5] [0.5, 0.5, 0.53125, 0.53125, 1.0, 1.0] - -
MFLOPs 34.77 129.43 - -

AVE-M 64

Left Eye
Operator [’fuse-mb’, ’conv’] [’fuse-mb’, ’skip’, ’skip’, ’skip’, ’conv’, ’conv’] [’fuse-mb’, ’conv’, ’conv’, ’fuse-mb’, ’fuse-mb’, ’conv’] [’skip’, ’skip’]

306.93

Channel Scale [0.53125, 0.5] [0.5, 0.5, 0.5, 0.5, 0.75, 0.75] [1.0, 0.5, 0.5, 0.5, 1.0, 1.0] [0.5, 0.5]
MFLOPs 38.88 31.35 24.84 5.31

Right Eye
Operator [’conv’, ’conv’] [’skip’, ’skip’, ’conv’, ’skip’, ’conv’, ’conv’] [’conv’, ’conv’, ’conv’, ’fuse-mb’, ’fuse-mb’, ’fuse-mb’] [’skip’, ’skip’]

Channel Scale [0.5, 0.5] [0.5, 0.5, 0.5, 0.5, 1.0, 1.0] [0.5, 0.5, 0.5, 0.5, 0.875, 0.9375] [0.5, 0.5]
MFLOPs 37.67 57.96 16.09 5.31

Mouth
Operator [’conv’, ’skip’] [’conv’, ’skip’, ’conv’, ’conv’, ’conv’, ’fuse-mb’] - -

Channel Scale [0.5, 0.5] [0.5, 0.5, 0.53125, 0.5, 1.0, 1.0] - -
MFLOPs 28.07 60.25 - -

AVE-S 64

Left Eye
Operator [’conv’, ’skip’] [’skip’, ’skip’, ’skip’, ’skip’, ’fuse-mb’, ’conv’] [’fuse-mb’, ’skip’, ’conv’, ’fuse-mb’, ’conv’, ’conv’] [’skip’, ’skip’]

174.75

Channel Scale [0.5, 0.53125] [0.5, 0.5, 0.5, 0.5, 0.75, 0.75] [0.5625, 0.5, 0.53125, 0.5, 0.75, 0.9375] [0.5, 0.53125]
MFLOPs 28.07 10.91 6.14 5.31

Right Eye
Operator [’conv’, ’skip’] [’skip’, ’skip’, ’skip’, ’skip’, ’conv’, ’fuse-mb’] [’fuse-mb’, ’skip’, ’conv’, ’conv’, ’conv’, ’fuse-mb’] [’skip’, ’skip’]

Channel Scale [0.53125, 0.53125] [0.5, 0.5, 0.5, 0.5, 0.75, 1.0] [0.5625, 0.5, 0.5, 0.5, 0.75, 0.9375] [0.5, 0.53125]
MFLOPs 28.07 14.65 6.82 5.31

Mouth
Operator [’conv’, ’skip’] [’fuse-mb’, ’skip’, ’conv’, ’conv’, ’conv’, ’fuse-mb’] - -

Channel Scale [0.5, 0.5] [0.5, 0.5, 0.5, 0.5, 0.75, 1.0] - -
MFLOPs 28.07 40.21 - -

of the main text are set to 1e-1, 1, 1, 1, 1e3, and 1e-4,
respectively, for balancing their magnitudes. The training
of the whole Codec Avatar pipeline [4] takes about 12 GPU
days and the search and training of avatar encoders take 2
GPU days.

Hyper-parameters of our proposed Auto-CARD.
Setup of AVE-NAS: For the sampling frequency K for reso-
lution search in Sec. 4.2.3, we set it as 16, which can help
stabilize the resolution search process based on our empirical
experiments. For the search objective of AVE-NAS, we set τ
and m in Eq. (3) of the main text, which are the temperature
parameter and the momentum factor, respectively, as 10 and
0.9 across all the experiments. Setup of LATEX: For LA-
TEX introduced in Sec. 4.3.2 of the main text, we extrapolate
the latent codes based on the previous 4 frames (T=4). To
avoid error accumulation across frames caused by inaccurate
extrapolation, we also set a rule that if the latent codes of
the previous 3 frames are derived by LATEX, we enforce an
encoder inference for acquiring the latent code of the current
frame. In addition, LATEX’s lightweight prediction head,
featuring one convolutional layer, one pooling layer, and one
fully-connected layer, is applied after the convolutional head
in the feature extraction backbone (introduced in Sec. 3) to
early predict the latent code, which is used to adaptively
decide whether to perform extrapolation via comparing with
a threshold determined by the target skip ratio.

3. Visualize the Encoder Architectures

SOTA EEM encoder. The SOTA EEM encoder [4],
which requires 2.9 GFLOPs to encoder each frame, adopts a
feature extractor backbone to extract the features of HMC
captured images, on top of which a latent code branch, a
gaze branch, and a key point branch, are applied to estimate

the latent code, gaze, and key points of the current frame,
respectively. In particular, the input resolution is [192, 192,
3] which concatenates the captured infrared images of the left
eye/right eye/mouth views. The feature extractor backbone
is composed of one convolution head and two bottleneck
blocks in [1] with an output channel number of [64, 128,
128], respectively, and a total stride of 4; The latent code
branch comprises 6 bottleneck blocks featuring a total stride
of 8 and an output channel number of [128, 128, 256, 256,
256, 256], respectively, and one fully-connected layer to
map the latent features into a 256-d vector; The gaze branch
comprises 6 bottleneck blocks featuring a total stride of 8 and
an output channel number of [128, 128, 128, 128, 64, 64],
respectively, plus one pooling layer and a fully-connected
layer to map the gaze features to a 6-d vector (i.e., 3-d gaze
directions for each eye); The key point branch comprises 4
bottleneck blocks with an output channel number of [128,
128, 64, 64], respectively, followed by a convolutional layer
to regress 19 key points.

Search space of our AVE-NAS. To ensure sufficient flex-
ibility of the encoder architecture, the search space spans
operator types, depth, width, and input resolution. For each
view in the view-decoupled supernet, we set 2, 6, 6, 2 search-
able blocks for the feature extractor backbone, latent code
branch, gaze branch, and key point branch with a maximal
output channel of [64,64], [64, 64, 256, 256, 512,512], [256,
256, 128, 128, 32, 32], and [128, 64], respectively. For the
supported operator types, each searchable block can be set
as Fused-MBConv [5], a single convolution with a kernel
size of 3×3, or skip connections. Note that if there exists a
feature dimension mismatch, the skip connection is switched
to a convolutional layer with a kernel size of 1×1. The en-
coder depth is searchable via setting the operators to skip
connections and the searchable encoder width is achieved



by applying an output channel scale, which is searched from
[0.5, 0.53125, 0.5625, 0.59375, 0.625, 0.6875, 0.75, 0.8125,
0.875, 0.9375, 1.0], on top of the maximal channel numbers.
For input resolution search, the candidates are [32, 48, 64,
80, 96, 128, 192] where the maximally allowed resolution is
inherited from EEM [4].

Our searched encoders. We visualize the searched en-
coders, including AVE-L, AVE-M, and AVE-S, in Tab. 3. We
can observe that the searched branches for different views
feature diverse complexity, aligning with the fact that differ-
ent cameras can capture different aspects of facial appear-
ance and motion. This indicates that the view-decoupled
supernet design not only echos the future distributed encod-
ing trend, but also enables the flexibility of view-specific en-
coder structures and thus improves the achievable accuracy-
efficiency trade-off of avatar encoding.
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