
Neural Transformation Fields for Arbitrary-Styled Font Generation
Supplementary Materials

Bin Fu1, Junjun He2, Jianjun Wang1, and Yu Qiao1,2∗

1ShenZhen Key Lab of Computer Vision and Pattern Recognition,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

2Shanghai Artificial Intelligence Laboratory
1{bin.fu, jj.wang2, yu.qiao}@siat.ac.cn, 2{hejunjun, qiaoyu}@pjlab.org.cn

1. Font Rendering Formulation Derivation
In this section, we provide the derivation of our font render formulations and the corresponding approximation equations.

We model the font transformation process in neural transformation field (NTF) via the creation intensity ϕ and dissipation
rate τ . The transformed intensity at location ω can be expressed as:

dI(ω)

dω
= ϕ(ω)τ(ω)− τ(ω)I(ω). (1)

The first term models the creation process while the second term models the dissipation process of font pixels. To solve this
equation, we bring the second term to the left hand side and multiple the integrating factor exp

(∫ ω
0
τ(t)dt

)
to the both sides:(

dI(ω)

dω
+ τ(ω)I(ω)

)
exp

(∫ ω

0

τ(t)dt

)
= ϕ(ω)τ(ω) exp

(∫ ω

0

τ(t)dt

)
, (2)

which can be expressed as

d

dω

(
I(ω) exp

(∫ ω

0

τ(t)dt

))
= ϕ(ω)τ(ω) exp

(∫ ω

0

τ(t)dt

)
. (3)

Integrating this equation from the original point ω = 0 to the estimated location ω = θ, we have

I(θ) exp

(∫ θ

0

τ(t)dt

)
− I0 =

∫ θ

0

ϕ(ω)τ(ω) exp

(∫ ω

0

τ(t)dt

)
dω. (4)

Thus the I(θ) can be expressed as

I(θ) = I0 exp

(
−
∫ θ

0

τ(t)dt

)
+

∫ θ

0

ϕ(ω)τ(ω) exp

(
−
∫ θ

ω

τ(t)dt

)
dω. (5)

Since the font pixels are generated and transformed from the original point ω = 0 to the estimated location ω = θ in our
model, the first term can be ignored, which leads to

I(θ) =

∫ θ

0

ϕ(ω)τ(ω) exp

(
−
∫ θ

ω

τ(t)dt

)
dω. (6)

∗Corresponding author: Yu Qiao



With the definition T (ω) = exp
(
−
∫ θ
ω
τ(x)dx

)
, we can arrive

I(θ) =

∫ θ

0

ϕ(ω)τ(ω)T (ω)dω (7)

Based on Eq. 7, generating a stylized font image at the location θ requires estimating this integral from the original point
to θ in our neural transformation field. In practice, we estimate this continuous integral numerically. The interval from the
original point to location θ is partitioned into N evenly-spaced segments with the length ξ = 1

N θ, and we draw one sample
in each segment i at the location θi = iξ. Therefore, the integral Eq. 7 in the segment i can be approximated by

Ii =

∫ θi+1

θi

τiϕi exp

(
−
∫ θ

ω

τ(x)dx

)
dω

= τiϕi

∫ θi+1

θi

exp

(
−
∫ θi+1

ω

τ(x)dx

)
exp

(
−
∫ θ

θi+1

τ(x)dx

)
dω

= τiϕi exp

(
−
∫ θ

θi+1

τ(x)dx

)∫ θi+1

θi

exp

(
−
∫ θi+1

ω

τ(x)dx

)
dω

≈ τiϕi exp

(
−
∫ θ

θi+1

τ(x)dx

)
exp (−τi(θi+1 − ω))

τi

∣∣∣∣θi+1

θi

= Ti (1− exp (−τiξ))ϕi, (8)

with

Ti = exp

− N∑
j=i+1

τiξ

 . (9)

Therefore, the integral in Eq. 7 can be approximated by

I =

N∑
i=1

Ti (1− exp (−τiξ))ϕi, (10)

2. Implement Details
2.1. Network Architectures

As shown in Fig. 3 (b) and (c) of main body, the architectures of the neural transformation field (NTF) are built up by
Conv Blocks, Residual Blocks, Up-Sampling Blocks, Down-Sampling Block, and AdaIN Blocks. The detailed structures of
such blocks are illustrated in Fig. 1.

Figure 1. The detailed structures of Conv Blocks, Residual Blocks, Up-Sampling Blocks, Down-Sampling Block, and AdaIN Blocks in
our paper. We implement the instance normalization (IN) and ReLU as the normalization operation and activation function, respectively.

Based on the above blocks, we construct our entire font generation model, and the details architectures of the style
estimator Eθ, structure encoder Ec, and neural transformation field are present in Tab. 1.



Style Estimator Eθ for Localized Style Representation

Layer Type Normalization Activation Paddding Kernel Size Stride Downsample Output Feature

Convolution Block - - 1 3 1 - 32
Down-Sampling Block IN ReLU 1 3 1 AvgPool 64
Convolution Block IN ReLU 1 3 1 - 64
Down-Sampling Block IN ReLU 1 3 1 AvgPool 128
Convolution Block IN ReLU 1 3 1 - 128
Residual Block ×3 IN ReLU 1 3 1 - 128
Residual Block IN ReLU 1 3 1 AvgPool 256
Residual Block ×2 IN ReLU 1 3 1 - 256
Residual Block IN ReLU 1 3 1 - 128
Residual Block IN ReLU 1 3 1 - 64
Residual Block IN ReLU 1 3 1 - 32
Residual Block IN ReLU 1 3 1 - 3

Structure Encoder Ec
Layer Type Normalization Activation Paddding Kernel Size Stride Downsample Output Feature

Convolution Block - - 1 3 1 - 32
Down-Sampling Block IN ReLU 1 3 1 AvgPool 64
Convolution Block IN ReLU 1 3 1 - 64
Down-Sampling Block IN ReLU 1 3 1 AvgPool 128
Convolution Block IN ReLU 1 3 1 - 128
Residual Block ×3 IN ReLU 1 3 1 - 128
Residual Block IN ReLU 1 3 1 AvgPool 256
Residual Block ×2 IN ReLU 1 3 1 - 256

Neural Transformation Field for Localized Style Representation (NTF-Loc)

Layer Type Normalization Activation Paddding Kernel Size Stride Upsample Output Feature

Convolution Layer - - 0 1 1 - 256
Residual Block ×3 IN ReLU 1 3 1 - 256
Up-Sampling Block IN ReLU 1 3 1 Nearest 128
Up-Sampling Block IN ReLU 1 3 1 Nearest 64
Up-Sampling Block IN ReLU 1 3 1 Nearest 32

Prediction Head for Creation Intensity ϕ

Convolution Layer - - 1 3 1 - 32
Convolution Layer - - 1 3 1 - 1
Output Layer - Tanh - - - - 1

Prediction Head for Dissipation Rate τ

Convolution Layer - - 1 3 1 - 32
Convolution Layer - - 1 3 1 - 1
Output Layer - Sigmoid - - - - 1

Table 1. Architecture of the style estimator Eθ , structure encoder Ec, and neural transformation field for Localized Style Representation.
IN denotes instance normalization.



2.2. Font Rendering Process

In this section, we provide the pseudo-code of font rendering process for Localized Style Representation (NTF-Loc) in
Algorithm 1.

Algorithm 1: Font Rendering Process for Localized Style Representation
Data: the estimated location θ, the structure embedding Fc, the number of sampling points N
Result: the target font image It
ξ ← 1

N θ;
for i← N to 1 do

θi ← iξ ;
(ϕi, τi)← NTF (Fc c© θi);
if i = N then

Ti ← 1;
T̃i ← exp (−τiξ);
It ← Ti

(
1− T̃i

)
ϕi;

else
Ti ← Ti+1T̃i+1 ;
T̃i ← exp (−τiξ);
It ← It + Ti

(
1− T̃i

)
ϕi;

end
end

In practice, since the current ϕi and τi are not dependent on the previous steps in the NTF function, we parallelly calculate
ϕi and τi with respect to the different locations θi. For details, please refer to our released code.

2.3. Optimization Details

We utilize Adam optimizer [2] to optimize our proposed method. The learning rates of style estimator Eθ, structure
encoder Ec, and neural transformation field (NTF) are lrBase = 4 × 10−4, while the learning rate of discriminator is lrD =
2× 10−3. The weights of the whole network are initialized by Kaiming initialization [1]. We set hyperparameters of the loss
function as λadv = 1.0 and λrec = 0.1. Our model is optimized for 800k iterations on a single NVIDIA RTX 3090 GPU.

3. Additional Experimental Results
In this section, we provide more quantitative and qualitative results to demonstrate the effectiveness of our method.

3.1. Quantitative Comparison

In this section, we compare our NTF with other SOTA methods in terms of inference running time (FPS), number of
parameters Np, and computation complexity (MACs) for generating 128 × 128 font images. The quantitative experimental
results are present in Tab. 2, from which we can draw the following conclusions: (1). In our NTF, as the sampling points
increase, the number of parameters (Np) remain constant, while inference running time and computation complexity will
increase. (2). Compared with MX-font, our NTF achieves higher performance with less Np, less MACs, and high FPS.

Table 2. Quantitative comparison in inference running time (FPS),
number of parameters (Np), and computation complexity (MACs).

Methods FPS Np MACs
FUNIT [3] 175 29.77M 21.01G
DG-font [6] 128 16.25M 23.99G
LF-font [4] 107 7.92M 24.79G
MX-font [5] 45 22.76M 51.12G
STF-Loc (N=5) 112 9.07M 24.78G
STF-Loc (N=15) 91 9.07M 43.64G



3.2. One-shot Font Generation

In this paper, our proposed Neural Transformation Field (NTF) is a general font generation method, which can perform
both one-shot and few-shot font generation tasks. In Tab. 3 of main body, we evaluate our NTF in few-shot setting. In this
section, we utilize our method to perform one-shot font generation task and compare the experimental results with CG-GAN.

Table 3. Performance comparison on one-shot font generation task under UFUC setting.

Methods SSIM↑ ms-SSIM↑ LPIPS↓ FID↓
Unseen Fonts and Unseen Contents

CG-GAN [3] 0.6812 0.3755 0.1825 40.67
NTF-Loc (Ours) 0.6429 0.3889 0.1225 23.15

As shown in Tab. 3, our method is better than CG-GAN in ms-SSIM, LPIPS, FID, showing that NTF can generate
promising results in one-shot font generation task.

3.3. The Creation and Dissipation in Font Transformation Process

In this section, we plot the source image, intermediate rendered image, and target image into a single figure to better
present the creation and dissipation of font pixels in our method. As shown in Fig. 2, the first line displays the source image,
target image, and the intermediate rendered images. We re-draw them to better display the creation and dissipation process
in the second line. Specifically, we re-color the source image and target (ground truth) image in red and blue, respectively.
Then we change the transparency of the intermediate rendered images and move them on top of the source and target images.
Based on these operations, the transformation process in our proposed model can be better observed.

Figure 2. The visualization results for the creation and dissipation in font transformation process.

3.4. Visualization Results

In this section, we provide more visualization results to further verify the effectiveness of our proposed model. The font
images are generated by our NTF-Loc model, and 8 font images are utilized as the reference images. The visualization results
for Unseen Fonts and Unseen Contents (UFUC-test) are present in Fig. 3. The visualization results for Unseen Fonts and
Seen Contents (UFSC-test) are shown in Fig. 4.



Figure 3. Additional visualization results for Unseen Fonts and Unseen Contents generated by our model. We utilize 8 font images as the
reference images (8-shot) to generate the target font.



Figure 4. Additional visualization results for Unseen Fonts and Seen Contents generated by our model. We utilize 8 font images as the
reference images (8-shot) to generate the target font.



4. Limitation
There are several limitations of our NTF: (1). As shown in Tab. 2, the computation complexity will increase and the

inference running time will decrease, when we utilize more sampling numbers to perform font rendering. This is a common
weakness in NeRF-based generation models. Fortunately, in our method, we only need few sampling points to generate the
promising font images, thus our NTF satisfies the real-time requirement in font generation task. (2). Since only few reference
samples are provided and does not cover all strokes, few-shot font generation task is still a difficult task in computer vision
community. Some local details of generated images are imperfect. Moreover, as shown in Fig. 5, for the fancy font, although
the overall structure and writing pattern can be modeled, the specific ornamentations and local details are missing.

Figure 5. Visualization results on fancy font.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on

imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages 1026–1034, 2015. 4
[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 4
[3] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, Jaakko Lehtinen, and Jan Kautz. Few-shot unsupervised image-

to-image translation. In Proceedings of the IEEE/CVF international conference on computer vision, pages 10551–10560, 2019. 4,
5

[4] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and Hyunjung Shim. Few-shot font generation with localized style representations
and factorization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 2393–2402, 2021. 4

[5] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and Hyunjung Shim. Multiple heads are better than one: Few-shot font generation
with multiple localized experts. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 13900–13909,
2021. 4

[6] Yangchen Xie, Xinyuan Chen, Li Sun, and Yue Lu. Dg-font: Deformable generative networks for unsupervised font generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5130–5140, 2021. 4


	. Font Rendering Formulation Derivation
	. Implement Details
	. Network Architectures
	. Font Rendering Process
	. Optimization Details

	. Additional Experimental Results
	. Quantitative Comparison
	. One-shot Font Generation
	. The Creation and Dissipation in Font Transformation Process
	. Visualization Results

	. Limitation

