
Supplementary Material for
Meta Style Adversarial Training for Cross-Domain Few-Shot Learning

We first provide more implementation details in Sec. A;
then we show more experimental results including plug-
ging StyleAdv into different FSL/CD-FSL methods, build-
ing StyleAdv upon the PGD attacker, optimizing the model
using different losses, and more ablation studies in Sec. B;
Finally, in Sec. C, we provide more visualization results.
A. More Implementation Details
A.1. Progressive Attacking Method

To better help understand our proposed progressive at-
tacking strategy, we compare it with the vanilla individual
attacking approach. The illustrations are provided in Fig-
ure 4. For simplification, we use S1, S2, and S3 to represent
the styles extracted from blocks E1, E2, and E3, respec-
tively. Correspondingly, Sadv

1 , Sadv

2 , and S
adv

3 represent the
adversarial styles.

We would like to highlight two points: 1. The vanilla indi-
vidual attacking method takes each block separately, which
may lead to inconsistencies between features in different
blocks. 2. By contrast, our progressive attacking method
accumulates the adversarial signals, generating smooth ad-
versarial features. Overall, we take the dependencies be-
tween blocks into account and produce a more coherent set
of adversarial features via the progressive attacking way.
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(a) Vanilla Individual Attacking Method (b) Ours Progressive Attacking Method

Figure 4. Illustrations of the vanilla/progressive attacking methods.

A.2. Loss Functions
Given the clean and perturbed episode features FT and

F
adv

T , recall that StyleAdv contains four sub losses: the
global classification loss Lcls, the original FSL loss Lfsl, the
adversarial FSL loss Ladv

fsl
, and the consistency loss Lcons.

Global Classification Loss: The Lcls is the cross entropy
(CE) loss between the predictions of the global classification
scores fcls(FT ) and the global class labels Y .
Original/Adversarial FSL Loss: Instead of using the global
labels Y , meta-learning adopts local FSL class labels Yfsl

for query images by adjusting the global labels to the set
of [0, 1, 2, ..., N � 1], where N denotes the N classes con-
tained in the episode. Since we perturb the episode at
style level while maintain the semantic content unchanged,
the synthesized adversarial data still belong to the same

FSL label Yfsl. The FSL losses thus are calculated as
Lfsl = CE(Pfsl, Yfsl), Ladv

fsl
= CE(P adv

fsl
, Yfsl), where

Pfsl = ffsl(FT ), P adv

fsl
= ffsl(F adv

T ).
Consistency Loss: The Lcons is introduced to constrain the
consistency between the prediction Pfsl and P

adv

fsl
. Specif-

ically, it is calculated by the KL divergence loss which is
defined below:

Lcons =
1

BN

BX

i=1

NX

j=1

Pfsl(i,j)
(logPfsl(i,j)

� logP adv

fsl(i,j)
),

(11)
where Pfsl, P

adv

fsl
2 RNM⇥N

, B = NM .

A.3. Competitors
In this paper, besides the existing CD-FSL methods, to-

tally six competitors including “Attack Image”, “Attack Fea-
ture” (as in Table 2) and “StyleGaus”, “MixStyle”, “Ad-
vStyle”, and “DSU” (as in Table 3) are adapted. Thus, we
give an introduction to the implementation details of these
proposed competitors.
Attack Image & Attack Feature: Generally, the “Attack Im-
age” and “Attack Feature” share the same forward pipeline as
our StyleAdv. To summarize, given a clean episode, all these
three methods first perturb the original data via adversarial
attack and then optimize the whole network under the super-
vision of both clean and adversarial perturbed episodes. The
loss defined in Eq. 10 which contains four sub losses is uti-
lized to optimize the network. Besides, the hyper-parameters
are also kept consistent. While different from attacking
styles as in StyleAdv, “Attack Image” attacks the episode at
the image pixel level. That is, given clean episode (T , Y ),
the attacked T adv is defined as,

T adv = T +kRT ·N (0, I)+✏·sign(rT J(✓E , ✓cls, T , Y )).
(12)

While “Attack Feature” generates the adversarial feature
FT adv from the clean episode feature FT as,

F
adv

T = FT +kRT ·N (0, I)+✏·sign(rFT J(✓E , ✓cls, FT , Y )).
(13)

To ensure a more fair comparison, the features of dif-
ferent blocks are attacked in the same progressive strategy
as StyleAdv. Concretely, using F1 denotes the feature ex-
tracted by the first block E1 i.e. F1 = E1(T ). The F

adv

1

can be easily obtained as in Eq. 13. However, for the subse-
quent block E2, rather than obtaining F2 as E2(F1), we have
F

0

2 = E2(F adv

1 ). Attacking F
0

2 results in the F
adv

2 . Simi-
larly, we obtain the F

adv

3 , thus get the final feature F
adv

T as
the result of applying max pooling into the F

adv

3 .
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StyleGaus: The only difference between StyleGuas and
StyleAdv lies in that rather than synthesizing new styles by
adversarial attack as in Eq. 7 and Eq. 8, StyleGaus adds
random Gaussian noises into the style (µ,�) as below:

µ
adv = µ+ k · N (0, I),�adv = � + k · N (0, I), (14)

where k is set as 16
255 . Note that all the other implement de-

tails e.g. network modules, pipeline, losses, and progressive
augment manner are the same as StyleAdv.
MixStyle: The results of adapting MixStyle [66] for CD-
FSL are introduced from wave-SAN [10]. Typically, the
MixStyle competitor is constructed by randomly sampling
two episodes from the source training set and using the
mixed style of these two episodes as the new style.
AdvStyle: We implement the AdvStyle that attacks the style
on images according to the pseudo codes provided in its
paper. However, AdvStyle is initially proposed for segmen-
tation, while we tackle the CD-FSL problem. Once we set
the task as N-way K-shot, we could not take data of differ-
ent sizes as input. Thus, rather than concating the original
episode and the style-attacked episode as the input, we per-
form FSL tasks for these two episodes in parallel and use
the sum of two FSL losses to optimize the network. For fair
comparisons, the attacking ratio is set as [0.008, 0.08, 0.8].
DSU: The DSU is adapted into CD-FSL by replacing our
style attacking method as their method – modeling a Gaus-
sian style distribution for each current batch of training data,
and then randomly sample a new style from the Gaussian
style. The core codes for modeling the style as uncertain
Gaussian are provided by DSU.

A.4. Details for Finetuning
For each novel testing episode, as stated in Sec. 4, we gen-

erate pseudo training episodes and use them for finetuning
the meta-trained model. Empirically, the finetuning stage is
sensitive to the learning rates and tuning iterations. Thus, we
provide the specific finetuning details as in Table 4. Overall,
compared to the ViT-small with large pretrained parameters
as initialization, the ResNet-10 (RN10) trained purely on the
single source dataset requires a bigger learning rate; com-
pared to the 5-shot models, finetuning 1-shot models needs
fewer training iterations.

Backbone LargeP Task Optimizer Iter LR

RN10 - 5-way 5-shot Adam 50 {0, 0.001}
RN10 - 5-way 1-shot Adam 10 {0, 0.005}

ViT-small DINO/IN1K 5-way 5-shot SGD 50 {0, 5e-5}
ViT-small DINO/IN1K 5-way 1-shot SGD 20 {0, 5e-5}

Table 4. The finetuning details for our ResNet10 (RN10) and
ViT-small based models. The “LargeP” denotes the large-scale
pretrained model. The “Iter” and the ”LR” represent the tuning
iterations and the learning rate, respectively.

B. More Experimental Results
B.1. Working in A Plug-and-Play Manner.

We highlight that our StyleAdv is complementary to other
CD-FSL methods and can be used in a plug-and-play manner.
To validate that, we show the results of plugin our StyleAdv
into several different base models. The results are reported
in Table. 5.

From the results, we draw the conclusion that our
StyleAdv is model-agnostic and improves other FSL/CD-
FSL methods effectively. Concretely, taking four different
FSL/CD-FSL methods as base models, our StyleAdv pro-
motes performance in most cases. Taking 5-way 1-shot as
an example, we on average improve the RelationNet [44],
the GNN [12], the FWT [48], and the PMF [19] by 4.81%,
4.51%, 3.75%, and 2.29%, respectively. Similar improve-
ments can be observed in 5-shot results.

B.2. Working with Different Attack Algorithms?
As stated in Sec. 3.3, our style adversarial attack method

is built upon the FGSM algorithm, thus we may wonder
whether StyleAdv can still work with different attack al-
gorithms. To that end, we further propose a variant style
attack method (Style-PGD) by adapting the PGD algorithm.
Formally,

µ
adv

0 = µ+kRT ·N (0, I),�adv

0 = �+kRT ·N (0, I), (15)

µ
adv

t
= µ

adv

t�1 + ✏ · sign(rµJ(✓E , ✓fcls ,A(FT , µ,�), Y )),
(16)

�
adv

t
= �

adv

t�1 + ✏ · sign(r�J(✓E , ✓fcls ,A(FT , µ,�), Y )).
(17)

The comparison results of the base GNN model, Style-
PGD, and Style-FGSM are given in Table 6. Results show
that both Style-PGD and Style-FGSM have a performance
improvement against the base GNN. This basically shows
that our StyleAdv is not sensitive to different attack algo-
rithms. Besides, we also observe that Style-PGD is worse
than Style-FGSM. This shows that the one-step attack is
enough and more suitable to generate desired adversarial
noises. Multi-step attacking may cause the generated styles
too difficult to train the model. Besides, this significantly
increases the burden of training. Thus, in this paper, we stick
to the one-step Style-FGSM as our attack method.

B.3. Effectiveness of Each Loss Item.
To show the effectiveness of each item, we conduct abla-

tion studies on different losses. Concretely, we compare our
StyleAdv which is optimized by four sub losses with that
of “w/o Lcls”, “w/o Lcons”, “w/o Lfsl,Lcons”, and “w/o
Ladv

fsl
,Lcons”. The 5-way 1-shot results are given in Table 7.

We first notice that all these variants perform worse than
our method. This generally shows that each loss helps. More
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1-shot Method ChestX ISIC EuroSAT CropDisease Cub Cars Places Plantae Average

RelationNet [44] - 21.95±0.20 30.53±0.30 49.08±0.40 53.58±0.40 41.27±0.40 30.09±0.30 48.16±0.50 31.23±0.30 38.24
+ StyleAdv 22.39±0.30 32.19±0.46 58.55±0.66 62.37±0.68 45.94±0.59 31.91±0.48 53.06±0.67 38.02±0.54 43.05 (4.81")

GNN [12] - 22.00±0.46 32.02±0.66 63.69±1.03 64.48±1.08 45.69±0.68 31.79±0.51 53.10±0.80 35.60±0.56 43.55
+ StyleAdv 22.64±0.35 33.96±0.57 70.94±0.82 74.13±0.78 48.49±0.72 34.64±0.57 58.58±0.83 41.13±0.67 48.06 (4.51")

FWT [48] - 22.04±0.44 31.58±0.67 62.36±1.05 66.36±1.04 47.47±0.75 31.61±0.53 55.77±0.79 35.95±0.58 44.14
+ StyleAdv 22.91±0.37 35.05±0.56 68.03±0.81 73.84±0.78 48.68±0.72 34.88±0.58 59.15±0.84 40.60±0.66 47.89 (3.75")

PMF⇤ [19] - 21.73±0.30 30.36±0.36 70.74±0.63 80.79±0.62 78.13±0.66 37.24±0.57 71.11±0.71 53.60±0.66 55.46
+ StyleAdv 22.92±0.32 33.05±0.44 72.15±0.65 81.22±0.61 84.01±0.58 40.48±0.57 72.64±0.67 55.52±0.66 57.75 (2.29")

5-shot Method ChestX ISIC EuroSAT CropDisease Cub Cars Places Plantae Average

RelationNet [44] - 24.07±0.20 38.60±0.30 65.56±0.40 72.86±0.40 56.77±0.40 40.46±0.40 64.25±0.40 42.71±0.30 50.66
+ StyleAdv 25.38±0.31 42.99±0.44 72.42±0.56 80.70±0.51 63.94±0.56 43.71±0.57 69.55±0.56 52.05±0.54 56.34 (5.68")

GNN [12] - 25.27±0.46 43.94±0.67 83.64±0.77 87.96±0.67 62.25±0.65 44.28±0.63 70.84±0.65 52.53±0.59 58.84
+ StyleAdv 26.07±0.37 45.77±0.51 86.58±0.54 93.65±0.39 68.72±0.67 50.13±0.68 77.73±0.62 61.52±0.68 63.77 (4.93")

FWT [48] - 25.18±0.45 43.17±0.70 83.01±0.79 87.11±0.67 66.98±0.68 44.90±0.64 73.94±0.67 53.85±0.62 59.77
+ StyleAdv 25.53±0.36 47.36±0.53 85.74±0.55 92.32±0.45 70.25±0.68 49.97±0.66 78.78±0.60 60.23±0.65 63.77 (4.00")

PMF [19] - 27.27 50.12 85.98 92.96 - - - - -
+ StyleAdv 26.97±0.33 47.73±0.44 88.57±0.34 94.85±0.31 95.82±0.27 61.73±0.62 88.33±0.40 75.55±0.54 72.44

Table 5. Results of our StyleAdv working in a plug-and-play way. Methods trained on mini-Imagenet and evaluated in eight various novel
target datasets, respectively. “-” represents the base model, “+StyleAdv” means that our StyleAdv is applied to the base model. Results
marked in blue perform best (best viewed in color).

Attack Algorithm ChestX ISIC EuroSAT CropDisease Cub Cars Places Plantae Average

1-shot GNN [12] 22.00±0.46 32.02±0.66 63.69±1.03 64.48±1.08 45.69±0.68 31.79±0.51 53.10±0.80 35.60±0.56 43.55
StyleAdv (Style-PGD) 22.74±0.35 32.79±0.53 68.08±0.82 73.02±0.81 47.86±0.70 34.27±0.56 57.13±0.83 39.90±0.63 46.97

StyleAdv (Style-FGSM) 22.64±0.35 33.96±0.57 70.94±0.82 74.13±0.78 48.49±0.72 34.64±0.57 58.58±0.83 41.13±0.67 48.06

5-shot GNN [12] 25.27±0.46 43.94±0.67 83.64±0.77 87.96±0.67 62.25±0.65 44.28±0.63 70.84±0.65 52.53±0.59 58.84
StyleAdv (Style-PGD) 25.98±0.38 44.49±0.50 84.39±0.57 92.30±0.43 68.50±0.67 48.82±0.64 77.76±0.62 59.62±0.66 62.73

StyleAdv (Style-FGSM) 26.07±0.37 45.77±0.51 86.58±0.54 93.65±0.39 68.72±0.67 50.13±0.68 77.73±0.62 61.52±0.68 63.77

Table 6. Results of StyleAdv working with different style attack algorithms. Models are built upon the ResNet-10 and GNN.

specifically, comparing “all losses” with “w/o Lcls”, we ob-
serve that a obvious performance improvement is brought
by Lcls. It is not difficult to understand since the Lcls makes
the global classifier optimized thus providing the correct
gradients for the Style-FGSM. Also, by comparing the re-
sults of ours against that of “w/o Lcons”, we show that the
consistency loss also contributes. It helps alleviate the se-
mantic drift problem caused by perturbing the styles thus
promoting the final model. In addition, through the results
of removing the Ladv

fsl
and Lcons, the effectiveness of the ad-

versarial styles generated by us is well indicated. The model
performance is boosted by introducing such relatively chal-
lenging styles. Finally, we find that the original styles also
help through the experimental results of “w/o Lfsl, Lcons”.

B.4. More Ablation Studies of StyleAdv.

Our StyleAdv perturbs the initial style using the attack-
ing ratio randomly sampled from ✏list with a random skip
probability pskip. In addition, the operation of random
start is applied before attacking. Thus, we perform abla-

tion studies on attacking with/without random start (RT),
pskip, and ✏list. Specifically, for the random skip probability
pskip, we set it as 0, 0.2, 0.4 (ours), and 0.6, respectively.
For the attacking ratio ✏list, four regular choices includ-
ing [0.2, 0.02, 0.002], [0.4, 0.04, 0.004], [0.8, 0.08, 0.008]
(ours), and [1.6, 0.16, 0.016] and two relative large options
including ✏list = [4] and ✏list = [20] are conducted. The
5-way 1-shot results are given in Table 8.

1) With/without random start. We first notice that our
choice of applying RT performs better than without RT in
most cases with an average improvement of 0.42%.

2) Different choices of pskip. For different choices of
pskip, we find that except for the Cars and Places, as pskip
increases, the accuracy will first rise and then fail, or keep
rising in some cases. This generally indicates that an appro-
priate pskip can trade off the introduced perturbations and
the difficulty of the meta task.

3) Different attacking ratios. The phenomenons pre-
sented by different ✏list factually are basically similar to
those of pskip. The higher the value of ✏list, the more diffi-
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Losses ChestX ISIC EuroSAT CropDisease Cub Cars Places Plantae Average

1-shot w/o Lcls 22.36±0.36 34.43±0.57 67.86±0.83 68.46±0.80 48.13±0.73 32.98±0.56 56.44±0.81 38.48±0.63 46.14
w/o Lcons 22.68±0.36 33.10±0.53 70.06±0.84 72.46±0.80 48.34±0.71 33.58±0.55 57.65±0.82 40.06±0.64 47.24
w/o Ladv

fsl ,Lcons 22.05±0.35 32.49±0.53 68.86±0.83 68.93±0.81 47.23±0.72 32.85±0.57 55.88±0.82 37.68±0.62 45.75
w/o Lfsl,Lcons 22.34±0.33 34.29±0.56 67.09±0.82 73.23±0.79 46.64±0.69 35.10±0.59 55.61±0.79 40.44±0.66 46.84
All losses (ours) 22.64±0.35 33.96±0.57 70.94±0.82 74.13±0.78 48.49±0.72 34.64±0.57 58.58±0.83 41.13±0.67 48.06

Table 7. Effectiveness of each loss item. Results conducted under 5-way 1-shot setting. Models are built upon the ResNet-10 and GNN.

1-shot Choice ChestX ISIC EuroSAT CropDisease Cub Cars Places Plantae Average

RT % 22.88±0.35 33.93±0.55 68.27±0.82 72.40±0.80 48.95±0.70 35.36±0.59 58.48±0.81 40.86±0.66 47.64
!(ours) 22.64±0.35 33.96±0.57 70.94±0.82 74.13±0.78 48.49±0.72 34.64±0.57 58.58±0.83 41.13±0.67 48.06

pskip pskip = 0 22.59±0.36 33.06±0.52 67.26±0.81 72.73±0.79 48.11±0.70 35.92±0.59 58.65±0.82 40.43±0.65 47.34
pskip = 0.2 22.97±0.37 33.63±0.54 70.06±0.81 73.85±0.78 48.06±0.71 34.57±0.58 58.43±0.82 39.87±0.65 47.68
pskip = 0.4 (ours) 22.64±0.35 33.96±0.57 70.94±0.82 74.13±0.78 48.49±0.72 34.64±0.57 58.58±0.83 41.13±0.67 48.06
pskip = 0.6 22.54±0.35 34.03±0.55 70.09±0.81 73.35±0.80 48.68±0.72 33.78±0.55 58.28±0.83 40.24±0.64 47.62

✏list ✏list = [20] 20.83±0.28 23.97±0.34 50.68±0.79 43.12±0.73 29.41±0.50 23.34±0.35 32.79±0.55 25.98±0.41 31.27
✏list = [4] 21.55±0.32 29.06±0.46 62.15±0.78 61.56±0.82 33.41±0.56 28.55±0.44 41.69±0.67 32.77±0.54 38.83
✏list = [1.6, 0.16, 0.016] 22.71±0.36 33.37±0.54 70.98±0.82 73.33±0.79 48.76±0.72 35.34±0.60 58.25±0.81 41.00±0.65 47.97
✏list = [0.8, 0.08, 0.008] (ours) 22.64±0.35 33.96±0.57 70.94±0.82 74.13±0.78 48.49±0.72 34.64±0.57 58.58±0.83 41.13±0.67 48.06
✏list = [0.4, 0.04, 0.004] 22.66±0.36 33.24±0.53 69.10±0.80 72.97±0.79 48.21±0.71 33.67±0.57 57.58±0.80 40.62±0.66 47.26
✏list = [0.2, 0.02, 0.002] 22.47±0.36 32.30±0.52 68.22±0.79 72.06±0.78 47.41±0.71 33.60±0.58 57.57±0.83 40.03±0.64 46.71

Table 8. Ablation studies on the random start (RT), skip probability pskip, and attacking ratio ✏list. 5-way 1-shot meta tasks are
conducted. Models are built on ResNet10 and GNN.

cult the meta task is. For the two large choices ✏list = [4]
and ✏list = [20], we find that when the attacking ratio be-
comes too large, the perturbations added will affect the orig-
inal semantic label, thus leading to the drastic performance
drop. The visualization results of stylized images with large
attacking ratios shown in Figure 5 further validate that a
suitable attacking ratio is key. In this paper, we set ✏list as
[0.8, 0.08, 0.008] as a trade-off. Note that our model is only
trained with the mini-Imagenet without any single target
image and we don’t tune our model e.g. hyper-parameters
for different target sets, thus it is unrealistic for our method
to achieve totally consistent performance on eight unseen
datasets. Alternatively, the choice with the relatively higher
average performance is finally selected.

Input Image
StyleAdv  
( )ϵ = 0.8

StyleAdv  
( )ϵ = 4

StyleAdv  
( )ϵ = 20

StyleAdv  
( )ϵ = 100

StyleAdv  
( )ϵ = 0.08

Figure 5. Visualization results of stylized images generated by
different attacking ratios.

C. More Visualization Results.
In the main file, as in Figure 3, the stylized images gen-

erated by StyleAdv are given. Further, we provide the vi-

sualization results of feature maps extracted by both the
ResNet-10 (RN10) and the ViT-small backbones. As shown
in Figure 6, two examples are illustrated. For each example,
both the clean feature maps and the attacked feature maps
are shown. The attacking ratio is set as [0.008]. Whether for
RN10-based features or ViT-small-based features, we visual-
ize 36 channels. Note that the VIT-small feature maps are
formed by reshaping the patch tokens as we do in Sec. 3.2.

Results show that: 1) The ViT-small feature maps also
correctly reflect the original image information e.g., the
shapes. This validates our idea of the patch tokens still
remain the spatial information and the whole image feature
can be formed by reshaping the patch tokens. This further
supports us to apply StyleAdv to the ViT features. 2) Since
the visualization is performed on the gray feature maps, the
differences between the clean feature maps and the attacked
feature maps are somewhat not so significant. However,
as highlighted in red bounding boxes, we can still observe
minor changes.

D. Discussion of Limitations
As indicated in Table 1, wave-SAN outperforms StyleAdv

on the Cub dataset. This result suggests that when the visual
appearances of the source and target datasets are similar,
augmenting the source styles via attacking may result in
overly challenging meta-tasks. Although we still improve
all the base models, exploring better methods to address this
issue could be one of our further work.
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ViT-small Clean Feature Maps ViT-small Attacked Feature Maps

Input Image

RN10 Clean Feature Maps RN10 Attacked Feature Maps

ViT-small Clean Feature Maps ViT-small Attacked Feature Maps

Input Image

RN10 Clean Feature Maps RN10 Attacked Feature Maps

Figure 6. The clean/style-attacked feature maps of ResNet10 (RN10) and ViT-small are visualized. We visualize 36 channels.
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