
Figure 1. Different numbers of past frame for TVPrediction
(MMVG vs. w/o Instruction).

Kitchen Flintstones MUGEN

Method T-VQ VidSwin FVD↓ RCS↑ FVD↓ RCS↑ FVD↓ RCS↑

TATS [4] - - 87.2 66.3 115.9 70.6 90.1 67.9
MMVG ✗ ✗ 81.5 68.1 110.1 72.4 86.3 69.6

MMVG
✓ ✗ 80.7 68.3 108.4 72.6 85.7 70.0
✗ ✓ 80.8 68.0 108.6 72.3 86.0 69.9
✓ ✓ 80.2 68.4 108.2 72.9 84.8 70.2

Table 1. Ablation study of MMVG with temporal-aware VQGAN
(T-VQ) and VideoSwin decoder (VidSwin) for TVPrediction.

A. More Past Frames for TVPrediction
As illustrated in Fig. 1, we explore the effect of different

past frames (K) for TVP. With more past frames, we see a
noticeable improvement for MMVG w/o Instruction (e.g.,
FVD decreases from 400 to 250 on MUGEN, and RCS in-
creases from 63 to 68 on Kitchen). However, it is still far
behind the one that has language guidance. Even only the
first frame with the text outperforms using 4 past frames on
Flintstones (e.g., a lower 110 FVD and a higher 73 RCS).
Furthermore, MUGEN performs a series of actions and re-
quires a longer temporal coherence; 4 past frames are insuf-
ficient to tell the expected outcome (e.g., the poor 7 RCS).
The above results demonstrate the cruciality of instruction.
On the other hand, for humans, supplying language is easier
than drawing more video frames. Our TVC provides a prac-
tical setting that leads to effective video completion perfor-
mance as well as human efficiency.

B. Ablation Study
We conduct an ablation study to investigate each compo-

nent effect in MMVG, including temporal-aware VQGAN
(T-VQ) and VideoSwin decoder (VidSwin). T-VQ makes
the reconstructed video from discrete tokens more smooth,
and VidSwin considers latent temporal during the video de-
coding. If without T-VQ and VidSwin, MMVG will share a
similar model architecture to TATS [4] but contain the pro-
posed masking strategy that learns video completion from
arbitrary frames. In Table 1, the performance gain mainly
comes from the masking strategy (e.g., a lower 81.5 FVD
on Kitchen and a higher 69.6 RCS on MUGEN), which val-
idates the core idea of the mask-then-recover learning. Both

T-VQ and VidSwin benefit the temporal coherence of video
modeling, leading to an FVD decrease with a slight increase
in RCS. In addition, combining all of them can bring a com-
prehensive improvement to MMVG.

C. Detailed Analysis
All experiments are conducted on the Kitchen dataset

for TVPrediction. We have a detailed comparison among
VQGAN [8], TA-VQ [4], and T-VQ. As shown below, our
T-VQ outperforms the others on both frame reconstruction
(over real video) and further TVP.

Reconstruction TVPrediction

VQ Model MSE↓ FVD↓ FVD↓ RCS↑

VQGAN [8] 0.01582 36.72 82.3 66.4
TA-VQ [4] 0.00926 20.05 80.8 68.0

T-VQ (ours) 0.00868 14.83 80.2 68.4

The DecQ predicts the next frame based on the previous
ones in an autoregressive manner. This enables a smooth
transition and models the temporal dependencies, which is
crucial for generative video modeling [4, 7, 18]. We also
consider using parallel decoding, but it performs far below
the autoregressive way.

Decoding FVD↓ RCS↑

Parallel 113.5 64.6
Autoregressive 80.2 68.4

For training, we have a high masking ratio p, with no
more than 4 frames. Each frame is 64 tokens, so the length
is no longer than 64*4+5([SPAN])+77(text)=340, which is
efficient for current sequential modeling. During inference,
there could be only two frames (head and tail) for the in-
filling task. We also compare the entire generation process
(enc+dec+VQ) to VideoDiff [5]. MMVG shows a better
time/GPU efficiency for single and parallel inference.

Time (sec) GPU (MB)

Model BS=1 4 BS=1 4

VideoDiff [5] 20.6 45.0 22419 37400
MMVG 16.9 20.1 19814 32018

We also try applying the same cube embedding and opti-
mize it via MSE loss. The result indicates that MMVG still
surpasses VideoMAE [13]. Moreover, the cube embedding
cannot present clear and detailed pixels, which is unsuitable
for video generation.

Model Output FVD↓ RCS↑

VideoMAE [13] Cube 328.9 47.6
MMVGU Cube 272.6 50.7

MMVGU VQ 105.6 63.3

For a fair comparison to TATS [4], we adopt the same
1024 codebook size and a 24-layer transformer. We con-
sider the common setting, 8192 codes (as DALL-E) or 12
layers (as BERT-base). More VQ codes do not affect the



Kitchen Flintstones MUGEN

Method FT. R@1 R@5 R@1 R@5 R@1 R@5

CLIP [9]
✗ 2.0 7.4 23.0 45.0 0.2 1.6

Mean 11.4 39.2 73.2 97.0 11.4 31.2
Temporal 33.6 79.8 93.4 100 47.2 84.4

Table 2. Results of instruction-to-video retrieval by CLIP with
different fine-tunings (FT.). We sample 1K pairs for this study.

quality. In contrast, to imitate the diverse activity motions,
MMVG requires a larger model capability. Without teacher-
forcing, the model cannot be trained effectively since it as-
sociates incorrect inputs with the corresponding outputs.

Codebook #Layer FVD↓ RCS↑

1024 12 99.3 65.2
1024 24 80.2 68.4

8192 24 79.9 68.3

For TVC, it is challenging to generate new objects that
are not presented in the visual cues or the instruction. As the
failure cases, though MMVG can make the motion of “open
the fridge”, the items inside the fridge remain blurry. This
highlights the need for human common sense to achieve re-
alistic video generation.

We also demonstrate video completion from intermedi-
ate, where ↖ means the provided frames.

D. Fine-tune CLIP as Evaluator
The CLIP model [9] has shown promising results by its

strong text-visual alignment. GDOVIA [17] adopts CLIP
and first proposes relative CLIP similarity (RCS) to eval-
uate text-guided visual generation. Since the video scene
is in a specific domain and may differ from CLIP, we fur-
ther fine-tune CLIP on each TVC dataset for a more precise
alignment as our evaluator. We consider two fine-tuned set-
tings: Mean and Temporal. Mean applies a mean pooling
layer over the visual features of all frames as the video fea-
tures. On the other hand, Temporal incorporates LSTM [6]
to acquire the temporal video features over frame features.
Table 2 presents the instruction-to-retrieval results with dif-
ferent fine-tuned settings. A higher recall represents a better
alignment between instructions and videos. If directly using
CLIP for RCS, it results in poor performance and is insuffi-
cient for our evaluation. By considering the latent temporal
within video features, Temporal leads to an overall advance
and brings reliable alignment. We then finalize our evalua-
tor as CLIP with the Temporal fine-tuning.

UCF-101

Method Pre-training IS↑ FVD↓

CogVideo [7] 5.4M 50.5 626
Make-A-Video [11] 20M 82.6 81

TATS [4] ✗ 71.6 341
MMVG ✗ 73.7 328

Table 3. Results of text-to-video generation on UCF-101. We
follow CogVideo [7] to treat class labels as the input text. We gray
out methods that use significantly more pre-training data.

Figure 2. Qualitative examples of text-to-video on UCF-101.

E. Text-to-Video Generation on UCF-101

We follow CogVideo [7] to treat class labels as the input
text for text-to-video generation on UCF-101 [12]. The re-
sults are shown in Table 3. Our MMVG, without additional
training data, can surpass large-scale pre-trained CogVideo.
The higher 73.7 IS shows that the generated results are more
diverse [10]. And the lower 328 FVD also supports its better
temporal coherence to ground-truth videos. When compar-
ing MMVG to TATS, our masking strategy indicates the ef-
fectiveness that learning from completion can improve text-
to-video. The qualitative examples are illustrated in Fig. 2.

F. Inferior Qualitative Results by VideoDiff

We show that diffusion methods cannot generate as high-
quality video as the used visual-token transformers (e.g.,
higher FVDs by VideoDiff [5] and MCVD [15]). We further
illustrate the qualitative examples by VideoDiff in Fig. 3.
As more challenging natural videos, we can see the blur-
ring scenes on Kitchen. The motions are also unclear to tell
what is actually doing. For Flintstones, it can produce char-
acters but is difficult to present temporal dynamics, where
the videos look almost static. Since it attempts to generate
video frames from the 3D auto-encoder, VideoDiff cannot
handle temporal coherence well. We still find obvious in-
consistent results on MUGEN, even with the autoregressive
video extension (e.g., the agent disappears with the plat-
form being different lengths in the first case, or the ladder
wrongly shows up in the third row.).



Figure 3. Qualitative examples of unconditional video genera-
tion on Kitchen, Flintstones, and MUGEN by VideoDiff [5].

G. Human Evaluation

As illustrated in Fig. 4, we investigate the quality of gen-
erated results from the human aspect via Amazon Mechan-
ical Turk. MTurkers rank the correlation of the TVC result

Figure 4. Screenshot of the ranking tasks for human evaluation.

concerning video quality, instruction relevance, or ground-
truth similarity. Each MTurker rewards $4.0 for a question
group and takes a mean of 7 minutes.

H. Social Impact and Ethics Discussion
TVC brings out a general video completion that can gen-

erate a video from frames at arbitrary time points and con-
trol via natural language. Although our work benefits cre-
ative visual applications, there may be a “fake as real” doubt
for those produced videos. To mitigate this issue, we fol-
low techniques in image forensics [3, 16] and train a binary
classifier [14] to detect video authenticity. The accuracy
on Kitchen, Flintstones, and MUGEN are all >99%, which
prevents them from counterfeiting. For guided instructions,
hate speech detection [1, 2] can be adopted to filter out po-
tential malicious texts to avoid controversial results.
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