# Supplementary Material sRGB Real Noise Synthesizing with Neighboring Correlation-Aware Noise Model

Zixuan Fu<sup>1</sup><sup>\*</sup>, Lanqing Guo<sup>1</sup><sup>\*</sup>, Bihan Wen<sup>1</sup><sup>†</sup> <sup>1</sup>Nanyang Technological University, Singapore

{zixuan.fu, lanqing001, bihan.wen}@ntu.edu.sg

#### **1. Network Architectures**

# **1.1. Generator Network Architectures**

Our proposed sRGB synthesizing framework contains three sub-networks: the gain estimation network (GENet), the noise-level prediction network (NPNet), and the neighboring correlation network (NCNet).

GENet. Table 1 shows the configuration of GENet, which contains five convolutional (conv) layers, a global average pooling layer [4], and a fully connected layer. The first layer is a  $7 \times 7$  conv layer while the kernel size of the other four conv layers is  $3 \times 3$ . The activation function for each conv layer is ReLU. After the conv layers, a global average pooling layer and a fully connected layer are applied to the feature map of the fifth conv to obtain the estimated gain factor. NPNet. Table 2 describes the architecture of the NPNet. The initial step involves embedding the clean patch into a 96 dimensional vector through a  $7 \times 7$  conv layer. Next, three gain layers are applied to the feature map of the first layer, each consisting of a  $1 \times 1$  convolution, a layer normalization (LN) [1], and a Leaky ReLU (LReLU) [5]. At each gain layer, the feature map is normalized by LN and multiplied by the gain factor. Finally, a  $1 \times 1$  conv layer is employed to obtain the predicted noise level map.

**NCNet.** We adopt the widely used U-Net [6] architecture to map neighboring correlation onto the signal-dependent and neighboring uncorrelated (SDNU) noise, which is introduced in Table 3. For better optimizing the network, we apply a global residual connection [3] between the output of the NCNet and the input SDNU noise.

### **1.2. Discriminator Network Architectures**

We adopt two discriminators, discriminator  $D_1$  for NC-Net and discriminator  $D_2$  for NPNet, to score the realness of the synthesized noise. The network architectures of  $D_1$ and  $D_2$  are similar which both contain several conv layers for feature extraction and several fully connected layers to

|          |           |              | Output   |        | Output       | Output      |
|----------|-----------|--------------|----------|--------|--------------|-------------|
| Inputs   | Operator  | Kernel       | Channels | Stride | Size         | Name        |
| Noisy    | Conv&ReLU | $7 \times 7$ | 96       | 1      | $h \times w$ | GE_conv1    |
| GE_conv1 | Conv&ReLU | $3 \times 3$ | 96       | 1      | $h \times w$ | GE_conv2    |
| GE_conv2 | Conv&ReLU | $3 \times 3$ | 96       | 1      | $h \times w$ | GE_conv3    |
| GE_conv3 | Conv&ReLU | $3 \times 3$ | 96       | 1      | $h \times w$ | GE_conv4    |
| GE_conv4 | Conv&ReLU | $3 \times 3$ | 96       | 1      | $h \times w$ | GE_conv5    |
| GE_conv5 | Avg Pool  | -            | 96       | -      | $1 \times 1$ | GE_pool1    |
| GE_pool1 | Conv      | $1 \times 1$ | 1        | 1      | $1 \times 1$ | Gain_factor |

Table 1. Architecture of the gain estimation network (GENet). Avg pool denotes the global average pooling layer [4].

|                       |                           |              | Output   |        | Output       | Output          |
|-----------------------|---------------------------|--------------|----------|--------|--------------|-----------------|
| Inputs                | Operator                  | Kernel       | Channels | Stride | Size         | Name            |
| Clean                 | Conv                      | $7 \times 7$ | 96       | 1      | $h \times w$ | NP_conv1        |
| NP_conv1              | Conv                      | $1 \times 1$ | 96       | 1      | $h \times w$ | NP_conv2        |
| NP_conv2              | LN                        | -            | 96       | -      | $h \times w$ | NP_norm1        |
| NP_norm1, Gain_factor | Pixel-wise multiplication | -            | 96       | -      | $h \times w$ | NP_gain1        |
| NP_gain1              | LReLU                     | -            | 96       | -      | $h \times w$ | NP_act1         |
| NP_act1               | Conv                      | $1 \times 1$ | 96       | 1      | $h \times w$ | NP_conv3        |
| NP_conv3              | LN                        | -            | 96       | -      | $h \times w$ | NP_norm2        |
| NP_norm2, Gain_factor | Pixel-wise multiplication | -            | 96       | -      | $h \times w$ | NP_gain2        |
| NP_gain2              | LReLU                     | -            | 96       | -      | $h \times w$ | NP_act2         |
| NP_act2               | Conv                      | $1 \times 1$ | 96       | 1      | $h \times w$ | NP_conv4        |
| NP_conv4              | LN                        | -            | 96       | -      | $h \times w$ | NP_norm3        |
| NP_norm3, Gain_factor | Pixel-wise multiplication | -            | 96       | -      | $h \times w$ | NP_gain3        |
| NP_gain3              | LReLU                     | -            | 96       | -      | $h \times w$ | NP_act3         |
| NP_act3               | Conv                      | $1 \times 1$ | 3        | 1      | $h \times w$ | Noise_level_map |

Table 2. Architecture of the noise-level prediction network (NPNet). LN denotes the layer normalization [1], and LReLU indicates the Leaky ReLU [5].

present the score of realness. The network architectures of two discriminators are shown in Table, respectively.

## 2. Pixel-Shuffle Down-Sampling Scheme

Directly calculating the adversarial loss  $\mathcal{L}_{adv2}$  between the synthesized SDNU noise  $\hat{v}$  and real noise n is improper as the neighboring correlation of real noise. To address this issue, we adopt the Pixel-Shuffle Down-Sampling (PD) scheme proposed in [7], as illustrated in Figure 1, to reduce the neighboring correlation of real noise. PD first divides the noise map into  $s \times s$  cells without overlapping, and then selects the pixels at the same location of each cells to create a down-sampled version. The PD scheme is applied on both the real noise and the SDNU noise  $(n, \hat{v})$  to obtain their down-sampled versions  $((n) \downarrow_s, (\hat{v}) \downarrow_s)$ . According to [7], the neighboring correlation in the down-sampled version of

<sup>\*</sup>Co-first authors contributed equally.

<sup>&</sup>lt;sup>†</sup>Corresponding author: Bihan Wen.

|                           |            |              | Output   |        | Output                                   | Output        |
|---------------------------|------------|--------------|----------|--------|------------------------------------------|---------------|
| Inputs                    | Operator   | Kernel       | Channels | Stride | Size                                     | Name          |
| SDNU_noise                | Conv       | $7 \times 7$ | 64       | 1      | $h \times w$                             | NC_conv1_1    |
| NC_conv1_1                | Conv&ReLU  | $3 \times 3$ | 64       | 1      | $h \times w$                             | NC_conv1_2    |
| NC_conv1_2                | Conv&ReLU  | $3 \times 3$ | 128      | 2      | $\frac{h}{2} \times \frac{w}{2}$         | NC_conv2_1    |
| NC_conv2_1                | Conv&ReLU  | $3 \times 3$ | 128      | 1      | $\frac{h}{2} \times \frac{\tilde{w}}{2}$ | NC_conv2_2    |
| NC_conv2_2                | Conv&ReLU  | $3 \times 3$ | 256      | 2      | $\frac{h}{4} \times \frac{\tilde{w}}{4}$ | NC_conv3_1    |
| NC_conv3_1                | Conv&ReLU  | $3 \times 3$ | 256      | 1      | $\frac{h}{4} \times \frac{\tilde{w}}{4}$ | NC_conv3_2    |
| NC_conv3_2                | Conv&ReLU  | $3 \times 3$ | 512      | 2      | $\frac{h}{8} \times \frac{\tilde{w}}{8}$ | NC_conv4_1    |
| NC_conv4_1                | Conv&ReLU  | $3 \times 3$ | 512      | 1      | $\frac{h}{8} \times \frac{w}{8}$         | NC_conv4_2    |
| NC_conv4_2                | Upsampling | -            | 512      | -      | $\frac{h}{4} \times \frac{w}{4}$         | NC_up1        |
| NC_up1                    | Conv&ReLU  | $3 \times 3$ | 256      | 1      | $\frac{h}{4} \times \frac{\tilde{w}}{4}$ | NC_conv5_1    |
| NC_conv5_1, NC_conv3_2    | Concat     | -            | 512      | -      | $\frac{h}{4} \times \frac{\tilde{w}}{4}$ | NC_concat1    |
| NC_concat1                | Upsampling | -            | 512      | -      | $\frac{h}{2} \times \frac{w}{2}$         | NC_up2        |
| NC_up2                    | Conv&ReLU  | $3 \times 3$ | 128      | 1      | $\frac{h}{2} \times \frac{\tilde{w}}{2}$ | NC_conv6_1    |
| NC_conv6_1, NC_conv2_2    | Concat     | -            | 256      | -      | $\frac{h}{2} \times \frac{\tilde{w}}{2}$ | NC_concat2    |
| NC_concat2                | Upsampling | -            | 256      | -      | $\tilde{h} \times \tilde{w}$             | NC_up3        |
| NC_up3                    | Conv&ReLU  | $3 \times 3$ | 64       | 1      | $h \times w$                             | NC_conv7_1    |
| NC_conv7_1, NC_conv1_2    | Concat     | -            | 128      | -      | $h \times w$                             | NC_concat3    |
| NC_concat3                | Conv       | $3 \times 3$ | 3        | -      | $h \times w$                             | NC_conv8      |
| NC_conv8                  | Tanh       | -            | 3        | -      | $h \times w$                             | SDNC_residual |
| SDNC_residual, SDNU_noise | Addition   | -            | 3        | -      | $h \times w$                             | SDNC_noise    |

Table 3. Architecture of the neighboring correlation network. Upsampling indicates the nearest interpolation operation. SDNU noise and SDNC noise are signal-dependent and neighboring uncorrelated noise and signal-dependent and neighboring correlated noise.

|           |            |              | Output   |        | Output         | Output    |
|-----------|------------|--------------|----------|--------|----------------|-----------|
| Inputs    | Operator   | Kernel       | Channels | Stride | Size           | Name      |
| Noise     | Conv       | $3 \times 3$ | 64       | 1      | $96 \times 96$ | D1_conv1  |
| D1_conv1  | Conv&LReLU | $4 \times 4$ | 64       | 2      | $48 \times 48$ | D1_conv2  |
| D1_conv2  | Conv&LReLU | $3 \times 3$ | 128      | 1      | $48 \times 48$ | D1_conv3  |
| D1_conv3  | Conv&LReLU | $4 \times 4$ | 128      | 2      | $24 \times 24$ | D1_conv4  |
| D1_conv4  | Conv&LReLU | $3 \times 3$ | 256      | 1      | $24 \times 24$ | D1_conv5  |
| D1_conv5  | Conv&LReLU | $4 \times 4$ | 256      | 2      | $12 \times 12$ | D1_conv6  |
| D1_conv6  | Conv&LReLU | $3 \times 3$ | 512      | 1      | $12 \times 12$ | D1_conv7  |
| D1_conv7  | Conv&LReLU | $4 \times 4$ | 512      | 2      | $6 \times 6$   | D1_conv8  |
| D1_conv8  | Conv&LReLU | $3 \times 3$ | 512      | 1      | $6 \times 6$   | D1_conv9  |
| D1_conv9  | Conv&LReLU | $4 \times 4$ | 512      | 2      | $3 \times 3$   | D1_conv10 |
| D1_conv10 | Flatten    | -            | 4608     | -      | $1 \times 1$   | D1_FC1    |
| D1_FC1    | Conv       | $1 \times 1$ | 100      | 1      | $1 \times 1$   | D1_FC2    |
| D1_FC2    | Conv       | $1 \times 1$ | 1        | 1      | $1 \times 1$   | D1_score  |

Table 4. Architecture of the discriminator  $D_1$ . Flatten refers to the process of transforming a three-dimensional tensor into a onedimensional vector through a reshaping operation. Note that the size of input noise patch is  $96 \times 96$ .

|          |            |              | Output   |        | Output         | Output   |
|----------|------------|--------------|----------|--------|----------------|----------|
| Inputs   | Operator   | Kernel       | Channels | Stride | Size           | Name     |
| Noise    | Conv       | $3 \times 3$ | 64       | 1      | $32 \times 32$ | D2_conv1 |
| D2_conv1 | Conv&LReLU | $4 \times 4$ | 64       | 2      | $16 \times 16$ | D2_conv2 |
| D2_conv2 | Conv&LReLU | $3 \times 3$ | 128      | 1      | $16 \times 16$ | D2_conv3 |
| D2_conv3 | Conv&LReLU | $4 \times 4$ | 128      | 2      | $8 \times 8$   | D2_conv4 |
| D2_conv4 | Conv&LReLU | $3 \times 3$ | 256      | 1      | $8 \times 8$   | D2_conv5 |
| D2_conv5 | Conv&LReLU | $4 \times 4$ | 256      | 2      | $4 \times 4$   | D2_conv6 |
| D2_conv6 | Flatten    | -            | 4096     | -      | $1 \times 1$   | D2_FC1   |
| D2_FC1   | Conv       | $1 \times 1$ | 100      | 1      | $1 \times 1$   | D2_FC2   |
| D2_FC2   | Conv       | $1 \times 1$ | 1        | 1      | $1 \times 1$   | D2_score |

Table 5. Architecture of the discriminator  $D_2$ . Note that the size of input noise patch is  $32 \times 32$ .

real noise  $(n) \downarrow_s$  is greatly attenuated. Therefore, we calculate the adversarial loss between the two down-sampled noise maps.

## 3. Discriminator Loss Functions

We adopt WGAN-GP [2] to reduce the discrepancies between the generated noise distribution and the real noise dis-



Figure 1. Illustration of Pixel-Shuffle Down-Sampling (PD) scheme. The down-sampled stride in this example is 2. SDNU noise is the signal-dependent and neighboring uncorrelated noise. *D* denotes the discriminator.

tribution. The adversarial loss  $\mathcal{L}_{D_1}$  for the discriminator  $D_1$  is defined as:

$$\mathcal{L}_{D_1} = \mathbb{E}_{\hat{\boldsymbol{n}}} \left[ D_1(\hat{\boldsymbol{n}}) \right] - \mathbb{E}_{\boldsymbol{n}} \left[ D_1(\boldsymbol{n}) \right] \\ + \lambda_{gp} \mathbb{E}_{\hat{\boldsymbol{n}}_{\delta}} \left[ (||\nabla_{\hat{\boldsymbol{n}}_{\delta}} D_1(\hat{\boldsymbol{n}}_{\delta})||_2 - 1)^2 \right],$$
(1)

where  $\hat{n}_{\delta}$  is the interpolated noise by computing as a weighted combination of the generated SDNC noise  $\hat{n}$  and real noise n, and  $\lambda_{gp}$  is the weight for the gradient penalty term [2], which is set to 10 in this paper. Similarly, the adversarial loss for the discriminator  $D_2$  is described as:

$$\mathcal{L}_{D_2} = \mathbb{E}_{(\hat{\boldsymbol{v}})\downarrow_s} \left[ D_2((\hat{\boldsymbol{v}})\downarrow_s] - \mathbb{E}_{(\boldsymbol{n})\downarrow_s} \left[ D_2((\boldsymbol{n})\downarrow_s) \right] + \lambda_{gp} \mathbb{E}_{\hat{\boldsymbol{v}}_\delta} \left[ (||\nabla_{\hat{\boldsymbol{v}}_\delta} D_2(\hat{\boldsymbol{v}}_\delta)||_2 - 1)^2 \right],$$
(2)

where  $\hat{v}_{\delta}$  is also a weighted combination of two downsampled noise  $(\hat{v}) \downarrow_s$  and  $(n) \downarrow_s$ , similar to the interpolated noise  $\hat{n}_{\delta}$ .

### 4. Network Effectiveness Evaluation

In the first case, for each noisy-clean image pair from the training set, GENet estimates the gain factor from the noisy image, which is used as the noise level to synthesize AWGN on the corresponding clean image. In the second case, GENet and NPNet are applied to synthesize signal-dependent and neighboring uncorrelated (SDNU) noise on clean images. In the third case, we generate signalindependent and neighboring correlated (SINC) noise on clean images by using GENet and NCNet. In the last case, we synthesize signal-dependent and neighboring correlated (SDNC) noise by using the whole framework. We finally train the DnCNN on the training set, where the noisy images are either the synthesized or real ones and evaluate the denoising performance of DnCNN on the validation set. Table 6 shows the denoising results of denoisers trained on different types of synthetic noise. We observe DnCNN trained on the SDNC noise performs best, suggesting modeling both

| GENet        | NPNet        | NCNet        | PSNR  |
|--------------|--------------|--------------|-------|
| $\checkmark$ |              |              | 36.29 |
| $\checkmark$ | $\checkmark$ |              | 37.10 |
| $\checkmark$ |              | $\checkmark$ | 39.37 |
| $\checkmark$ | $\checkmark$ | $\checkmark$ | 39.46 |

Table 6. Ablation study of different networks. The corresponding types of synthetic noise from the top to bottom are AWGN; signal-dependent and neighboring uncorrelated (SDNU) noise; signal-independent and neighboring correlated (SINC) noise; and signal-dependent and neighboring correlated (SDNC) noise.

signal dependency and neighboring correlation of noise is crucial for sRGB real noise synthesis. Moreover, the denoising performance of DnCNN in the third case outperforms its counterpart in the second case, indicating that explicitly modeling the neighboring correlation of sRGB real noise enables the proposed noise synthesizing framework to greatly narrows the gap between the synthetic noise and sRGB real noise.

# References

- Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint arXiv:1607.06450*, 2016.
- [2] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved training of wasserstein gans. *NIPS*, 2017. 2
- [3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *CVPR*, 2016.
  1
- [4] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013. 1
- [5] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural network acoustic models. In *ICML*, 2013. 1
- [6] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *MICCAI*, 2015.
- [7] Yuqian Zhou, Jianbo Jiao, Haibin Huang, Yang Wang, Jue Wang, Honghui Shi, and Thomas Huang. When awgn-based denoiser meets real noises. In AAAI, 2020. 1