
Supplementary Material
sRGB Real Noise Synthesizing with Neighboring Correlation-Aware Noise Model

Zixuan Fu1 *, Lanqing Guo1 *, Bihan Wen1 †

1Nanyang Technological University, Singapore
{zixuan.fu, lanqing001, bihan.wen}@ntu.edu.sg

1. Network Architectures

1.1. Generator Network Architectures

Our proposed sRGB synthesizing framework contains
three sub-networks: the gain estimation network (GENet),
the noise-level prediction network (NPNet), and the neigh-
boring correlation network (NCNet).
GENet. Table 1 shows the configuration of GENet, which
contains five convolutional (conv) layers, a global average
pooling layer [4], and a fully connected layer. The first layer
is a 7 × 7 conv layer while the kernel size of the other four
conv layers is 3 × 3. The activation function for each conv
layer is ReLU. After the conv layers, a global average pool-
ing layer and a fully connected layer are applied to the fea-
ture map of the fifth conv to obtain the estimated gain factor.
NPNet. Table 2 describes the architecture of the NPNet.
The initial step involves embedding the clean patch into a 96
dimensional vector through a 7 × 7 conv layer. Next, three
gain layers are applied to the feature map of the first layer,
each consisting of a 1×1 convolution, a layer normalization
(LN) [1], and a Leaky ReLU (LReLU) [5]. At each gain
layer, the feature map is normalized by LN and multiplied
by the gain factor. Finally, a 1 × 1 conv layer is employed
to obtain the predicted noise level map.
NCNet. We adopt the widely used U-Net [6] architecture
to map neighboring correlation onto the signal-dependent
and neighboring uncorrelated (SDNU) noise, which is in-
troduced in Table 3. For better optimizing the network, we
apply a global residual connection [3] between the output
of the NCNet and the input SDNU noise.

1.2. Discriminator Network Architectures

We adopt two discriminators, discriminator D1 for NC-
Net and discriminator D2 for NPNet, to score the realness
of the synthesized noise. The network architectures of D1

and D2 are similar which both contain several conv layers
for feature extraction and several fully connected layers to
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Inputs Operator Kernel
Output

Channels Stride
Output

Size
Output
Name

Noisy Conv&ReLU 7× 7 96 1 h× w GE conv1
GE conv1 Conv&ReLU 3× 3 96 1 h× w GE conv2
GE conv2 Conv&ReLU 3× 3 96 1 h× w GE conv3
GE conv3 Conv&ReLU 3× 3 96 1 h× w GE conv4
GE conv4 Conv&ReLU 3× 3 96 1 h× w GE conv5
GE conv5 Avg Pool – 96 – 1× 1 GE pool1
GE pool1 Conv 1× 1 1 1 1× 1 Gain factor

Table 1. Architecture of the gain estimation network (GENet).
Avg pool denotes the global average pooling layer [4].

Inputs Operator Kernel
Output

Channels Stride
Output

Size
Output
Name

Clean Conv 7× 7 96 1 h× w NP conv1
NP conv1 Conv 1× 1 96 1 h× w NP conv2
NP conv2 LN – 96 – h× w NP norm1

NP norm1, Gain factor Pixel-wise multiplication – 96 – h× w NP gain1
NP gain1 LReLU – 96 – h× w NP act1
NP act1 Conv 1× 1 96 1 h× w NP conv3

NP conv3 LN – 96 – h× w NP norm2
NP norm2, Gain factor Pixel-wise multiplication – 96 – h× w NP gain2

NP gain2 LReLU – 96 – h× w NP act2
NP act2 Conv 1× 1 96 1 h× w NP conv4

NP conv4 LN – 96 – h× w NP norm3
NP norm3, Gain factor Pixel-wise multiplication – 96 – h× w NP gain3

NP gain3 LReLU – 96 – h× w NP act3
NP act3 Conv 1× 1 3 1 h× w Noise level map

Table 2. Architecture of the noise-level prediction network
(NPNet). LN denotes the layer normalization [1], and LReLU in-
dicates the Leaky ReLU [5].

present the score of realness. The network architectures of
two discriminators are shown in Table, respectively.

2. Pixel-Shuffle Down-Sampling Scheme

Directly calculating the adversarial loss Ladv2 between
the synthesized SDNU noise v̂ and real noise n is improper
as the neighboring correlation of real noise. To address
this issue, we adopt the Pixel-Shuffle Down-Sampling (PD)
scheme proposed in [7], as illustrated in Figure 1, to reduce
the neighboring correlation of real noise. PD first divides
the noise map into s×s cells without overlapping, and then
selects the pixels at the same location of each cells to create
a down-sampled version. The PD scheme is applied on both
the real noise and the SDNU noise (n, v̂) to obtain their
down-sampled versions ((n) ↓s, (v̂) ↓s). According to [7],
the neighboring correlation in the down-sampled version of
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Inputs Operator Kernel
Output

Channels Stride
Output

Size
Output
Name

SDNU noise Conv 7× 7 64 1 h× w NC conv1 1
NC conv1 1 Conv&ReLU 3× 3 64 1 h× w NC conv1 2
NC conv1 2 Conv&ReLU 3× 3 128 2 h

2 × w
2 NC conv2 1

NC conv2 1 Conv&ReLU 3× 3 128 1 h
2 × w

2 NC conv2 2
NC conv2 2 Conv&ReLU 3× 3 256 2 h

4 × w
4 NC conv3 1

NC conv3 1 Conv&ReLU 3× 3 256 1 h
4 × w

4 NC conv3 2
NC conv3 2 Conv&ReLU 3× 3 512 2 h

8 × w
8 NC conv4 1

NC conv4 1 Conv&ReLU 3× 3 512 1 h
8 × w

8 NC conv4 2
NC conv4 2 Upsampling – 512 – h

4 × w
4 NC up1

NC up1 Conv&ReLU 3× 3 256 1 h
4 × w

4 NC conv5 1
NC conv5 1, NC conv3 2 Concat – 512 – h

4 × w
4 NC concat1

NC concat1 Upsampling – 512 – h
2 × w

2 NC up2
NC up2 Conv&ReLU 3× 3 128 1 h

2 × w
2 NC conv6 1

NC conv6 1, NC conv2 2 Concat – 256 – h
2 × w

2 NC concat2
NC concat2 Upsampling – 256 – h× w NC up3

NC up3 Conv&ReLU 3× 3 64 1 h× w NC conv7 1
NC conv7 1, NC conv1 2 Concat – 128 – h× w NC concat3

NC concat3 Conv 3× 3 3 – h× w NC conv8
NC conv8 Tanh – 3 – h× w SDNC residual

SDNC residual, SDNU noise Addition – 3 – h× w SDNC noise

Table 3. Architecture of the neighboring correlation network.
Upsampling indicates the nearest interpolation operation. SDNU
noise and SDNC noise are signal-dependent and neighboring un-
correlated noise and signal-dependent and neighboring correlated
noise.

Inputs Operator Kernel
Output

Channels Stride
Output

Size
Output
Name

Noise Conv 3× 3 64 1 96× 96 D1 conv1
D1 conv1 Conv&LReLU 4× 4 64 2 48× 48 D1 conv2
D1 conv2 Conv&LReLU 3× 3 128 1 48× 48 D1 conv3
D1 conv3 Conv&LReLU 4× 4 128 2 24× 24 D1 conv4
D1 conv4 Conv&LReLU 3× 3 256 1 24× 24 D1 conv5
D1 conv5 Conv&LReLU 4× 4 256 2 12× 12 D1 conv6
D1 conv6 Conv&LReLU 3× 3 512 1 12× 12 D1 conv7
D1 conv7 Conv&LReLU 4× 4 512 2 6× 6 D1 conv8
D1 conv8 Conv&LReLU 3× 3 512 1 6× 6 D1 conv9
D1 conv9 Conv&LReLU 4× 4 512 2 3× 3 D1 conv10
D1 conv10 Flatten – 4608 – 1× 1 D1 FC1

D1 FC1 Conv 1× 1 100 1 1× 1 D1 FC2
D1 FC2 Conv 1× 1 1 1 1× 1 D1 score

Table 4. Architecture of the discriminator D1. Flatten refers to
the process of transforming a three-dimensional tensor into a one-
dimensional vector through a reshaping operation. Note that the
size of input noise patch is 96× 96.

Inputs Operator Kernel
Output

Channels Stride
Output

Size
Output
Name

Noise Conv 3× 3 64 1 32× 32 D2 conv1
D2 conv1 Conv&LReLU 4× 4 64 2 16× 16 D2 conv2
D2 conv2 Conv&LReLU 3× 3 128 1 16× 16 D2 conv3
D2 conv3 Conv&LReLU 4× 4 128 2 8× 8 D2 conv4
D2 conv4 Conv&LReLU 3× 3 256 1 8× 8 D2 conv5
D2 conv5 Conv&LReLU 4× 4 256 2 4× 4 D2 conv6
D2 conv6 Flatten – 4096 – 1× 1 D2 FC1
D2 FC1 Conv 1× 1 100 1 1× 1 D2 FC2
D2 FC2 Conv 1× 1 1 1 1× 1 D2 score

Table 5. Architecture of the discriminator D2. Note that the size
of input noise patch is 32× 32.

real noise (n) ↓s is greatly attenuated. Therefore, we cal-
culate the adversarial loss between the two down-sampled
noise maps.

3. Discriminator Loss Functions

We adopt WGAN-GP [2] to reduce the discrepancies be-
tween the generated noise distribution and the real noise dis-

S=2

SDNU Noise

S=2

D

Real Noise

Score

Figure 1. Illustration of Pixel-Shuffle Down-Sampling (PD)
scheme. The down-sampled stride in this example is 2. SDNU
noise is the signal-dependent and neighboring uncorrelated noise.
D denotes the discriminator.

tribution. The adversarial loss LD1
for the discriminator D1

is defined as:

LD1
= En̂

[
D1(n̂)

]
− En

[
D1(n)

]
+ λgp En̂δ

[
(||∇n̂δ

D1(n̂δ)||2 − 1)
2]
,

(1)

where n̂δ is the interpolated noise by computing as a
weighted combination of the generated SDNC noise n̂ and
real noise n, and λgp is the weight for the gradient penalty
term [2], which is set to 10 in this paper. Similarly, the ad-
versarial loss for the discriminator D2 is described as:

LD2
= E(v̂)↓s

[
D2((v̂) ↓s

]
− E(n)↓s

[
D2((n) ↓s)

]
+ λgp Ev̂δ

[
(||∇v̂δ

D2(v̂δ)||2 − 1)
2]
,

(2)

where v̂δ is also a weighted combination of two down-
sampled noise (v̂) ↓s and (n) ↓s, similar to the interpolated
noise n̂δ .

4. Network Effectiveness Evaluation
In the first case, for each noisy-clean image pair from

the training set, GENet estimates the gain factor from the
noisy image, which is used as the noise level to synthe-
size AWGN on the corresponding clean image. In the
second case, GENet and NPNet are applied to synthesize
signal-dependent and neighboring uncorrelated (SDNU)
noise on clean images. In the third case, we generate signal-
independent and neighboring correlated (SINC) noise on
clean images by using GENet and NCNet. In the last case,
we synthesize signal-dependent and neighboring correlated
(SDNC) noise by using the whole framework. We finally
train the DnCNN on the training set, where the noisy images
are either the synthesized or real ones and evaluate the de-
noising performance of DnCNN on the validation set. Table
6 shows the denoising results of denoisers trained on differ-
ent types of synthetic noise. We observe DnCNN trained on
the SDNC noise performs best, suggesting modeling both



GENet NPNet NCNet PSNR

✓ 36.29
✓ ✓ 37.10
✓ ✓ 39.37
✓ ✓ ✓ 39.46

Table 6. Ablation study of different networks. The corresponding
types of synthetic noise from the top to bottom are AWGN; signal-
dependent and neighboring uncorrelated (SDNU) noise; signal-
independent and neighboring correlated (SINC) noise; and signal-
dependent and neighboring correlated (SDNC) noise.

signal dependency and neighboring correlation of noise is
crucial for sRGB real noise synthesis. Moreover, the de-
noising performance of DnCNN in the third case outper-
forms its counterpart in the second case, indicating that ex-
plicitly modeling the neighboring correlation of sRGB real
noise enables the proposed noise synthesizing framework
to greatly narrows the gap between the synthetic noise and
sRGB real noise.
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