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A. Depth-based Mapping Details

Action failure checking. For both learnable and heuristic
explorers, actions may fail. For map based explorers, an ob-
stacle might be below the field of view and hence not cap-
tured as occupied space. For learnable explorers, the out-
put policy may heavily favor a failed action (e.g., MOVEA-
HEAD), which could be executed repeatedly.

To improve the action success of our CoWs, we employ
a simple strategy. We compute the absolute difference be-
tween depth channels in the observations A; ;41 = |D; —
D;11]. We then compute the mean p(A; ;1) and stan-
dard deviation o (A; ;+1) as representative statistics. These

quantities have interpretable meaning in meters. Since ac-
tions should move the agent forward by approximately a
fixed distance or rotation, we can then set reasonable thresh-
olds for u, o below which we can be confident actions
failed. In our studies, we set these to 4 = 0.1m, 0 = 0.1m.

Note, that in modern robot navigation systems, on-board
pose estimation and bumper sensors for obstacle avoidance
are nearly ubiquitous. Hence, it is possible to implement
action failure checking beyond visual inputs, even though in
this paper we only consider vision-based failure checking.

Formalization of registering new depth observations.
Recall, a CoW constructs a top-down map based on ego-
centric depth observation and approximated poses deltas.
We provide a formalization of this process.

To create this map, we first estimate the pose of the
CoW’s coordinate frame. Let C; be the current local coor-
dinate frame of a CoW at timestep <. Let W denote a world
frame. We would like to align observations from each lo-
cal frame to W to keep a single, consistent map. When a
CoW is initialized, we set WTCU = [, where [ is the iden-
tity SE(3) transform and WTCO is a transform, which aligns
frame Cy to W. Since a CoW knows the intended conse-
quences of its actions (e.g., MOVEFORWARD should result
in a translation of 0.25m), each action can be represented
as a delta transform, which models an action transition. By
concatenating these transforms over time, we get pose es-
timates. To estimate pose at timestep ¢ + 1, we compute
WTe,., =VTc,-“ Tc,,,. Due to sensor-noise and action
failures, these estimates are sensitive to pose drift. We use
the current estimated pose "V T¢,, camera intrinsic matrix
K, current depth observation Dy, standard back-projection
of D,, and pose concatenation to register new observations
in frame W.

Since navigation is mostly concerned with free v.s. oc-
cupied space, we do not keep the whole 3D map. Rather we
project the map on the ground-plane using the known agent
height and down gravity direction. Points already near the
floor are considered free space, while other points are con-
sidered occupied as shown in. Additionally, we discretize
the map, which additionally helps deal with sensor noise.

B. Exploration Details

Learnable exploration. We use the AllenAct [76] frame-
work to conduct exploration agent training. Our DD-PPO
hyperparameters are in Tab. 5. We employ a simple state
visitation count based reward. An agent receives a reward
of 0.1 for visiting a previously unvisited voxel location (at
0.125m resolution), and a step penalty of -0.01. We train
two agents, one on ROBOTHOR and the other on HABITAT
MP3D train sets, which are disjoint from the downstream
validation sets we use for testing.



Hyperparameter ‘ Value
Discount factor (v) 0.99
GAE parameter () 0.95
Clipping parameter (¢) 0.1
Value loss coefficient 0.5
Entropy loss coefficient 0.01
LR 3e-4
Optimizer Adam
Training steps 60M
Steps per rollout 500

Table 5. DD-PPO hyperparameters. Used for training explo-
ration agents in both HABITAT and ROBOTHOR.

C. Localization Details

Here we provide a review of the CLIP model [61], the
concept of prompt ensembling as it relates to CLIP, the
gradient saliency method introduced by Chefer et al. [13],
MDETR [36], and OWL-ViT [49].

CLIP overview. Recent open-vocabulary models for zero-
shot image classification include CLIP [61], ALIGN [35],
and BASIC [58]. These methods pre-train contrastively on
image-caption pairs from the internet. In the case of the
original CLIP model, on 400M pairs. The key insight is that
the image representation—extracted by a vision tower—
and the caption representation—extracted by a text tower—
should be similar. Hence, the contrastive objects encour-
ages image and text representations for a positive pairs to be
similar and for these representations to be dissimilar from
other images and captions.

More formally, CLIP jointly trains two encoders: a vi-
sual encoder fy and a language encoder f). Given a dataset
of image-text pairs D = {..., (L, k), (Tkt1s tht1)ys s
which can be generated at massive scale by leveraging in-
ternet data. CLIP employs standard mini-batch style train-
ing. Given a batch of size n, with n image-text pairs,
the current functions fy and f) are used to featurize the
data, yielding L-2 normalized embeddings for the batch:
{(L,28), (21, 24),...(2L, 2t), }. Tt is then possible to de-
fine a symmetric contrastive loss of the following form, for
each sample in the batch:
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By minimizing this loss, the representation for images and
their corresponding captions are pushed closer together,
while these representations are pushed farther from other
images and text features in the batch, which are assumed to
contain dissimilar concepts.

After training, these models can be thought to match im-
ages and captions. Given a set of captions identifying con-
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cepts (e.g., “a photo of an apple.”, “a photo of an orange”,
etc.) it is possible to construct a classification head by ex-
tracting text features, via f, and L-2 normalizing each of
them. Now given an image, say of an apple, we can extract
a visual feature, via fy, and again L-2 normalize. By dot-
ting the visual feature with the text features, we can find the
highest similarity score amongst the text captions and as-
sign the image the corresponding label (e.g., ”apple” from
the caption “a photo of an apple.”). Because this down-
stream classifier has not been trained to specifically classify
images (say apples), it is considered a zero-shot classifier.

CLIP prompt ensembling. Radford et al. [61] find a sim-
ple strategy to boost performance of a CLIP zero-shot clas-
sifier. Instead of using one prompt for a class (e.g., “a photo
of a apple.”), they instead compute many text features for a
class (e.g., “a photo of a apple.”, “a blurry photo of a apple.”,
etc.). By simply averaging all these text features, they find
performance improves. For CLIP-Ref., CLIP-Patch, and
CLIP-Grad. strategies we similarly use prompt ensembling
using the set of 80 prompt templates used for ImageNet-1k
evaluation.> We present a prompt ablation in Appx. G.

Grad-CAM [70] and Chefer et al. [13] overview.

We begin by reviewing the Grad-CAM formulation,
from which many gradient-based interpretability methods
draw inspiration. Given a target class ¢, an input image x
and a model fy, Grad-CAM produces a localization map
L., capturing the importance of each pixel for the image
to be classified as the target class. For standard convolu-
tional neural networks, neuron importance weights «af, are
obtained from average pooling the gradients of the activa-
tions A*:

y°
af, = AveragePooIM ( - ) . 2)
OAF;
The relevance map is then given by a linear combination
of the activations, weighted by the importance from Eq. 2:

L. = RelLU (Z azAk> , (3)
k

where ReLU denotes the rectified linear unit function,
ReLU(z) = max(0,z). The final relevance map is ob-
tained by resizing L. to the same size as the original image,
using bilinear interpolation.

For ViTs [23], we follow the method of Chefer et
al. [13]. Specifically, given the attention maps A* for each
transformer block %, and relevance scores R¥ [50], the rel-
evance map LY'T is given by:

L =114 @
k

3notebook exploring the effects of the 80 prompts on ImageNet-1k


https://github.com/openai/CLIP/blob/e184f608c5d5e58165682f7c332c3a8b4c1545f2/notebooks/Prompt_Engineering_for_ImageNet.ipynb

Gradient-based (ours)

Chefer et al. [12]

Figure 7. Gradient-based relevance visualization. The target
object is a plant. For our gradient-based strategy, derived from
that of Chefer et al. [13], relevance is low when the object is not
in the image and high otherwise. In contrast the original method,
produces spurious relevance when the target object is not in the
frame due to the normalization it employs. Notice when the plant
is in the frame, the relevance map is similar.

A¥ = I +E), [ReLU (VA* © RY)], (5)

where [E;, computes the mean over the attention heads and
©® represents the element-wise product. In our case, we
only look at attention maps from the final transformer block.
Hence, k = 1.

It is standard to use an interpretability method like those
of Selvaraju et al. [70] or Chefer et al. [13] to query for a
class that is known to be in the image a priori. Hence, it is
common practice to normalize relevance maps by subtract-
ing the minimum relevance and normalizing by the differ-
ence between the maximum and minimum relevance. This
results in a max value of 1.0. As mentioned in Sec. 4.3 this
is not a suitable strategy for object navigation because in
many frames the object is not in the image. Hence, in early
experiments, we removed the normalization. Fig. 7 makes
the differences between these strategies apparent. We no-
tice this simple modification gives signal not only for true
positive detections, but—critically—also for true negatives.
Notice that when the plant is not in view, relevance is qual-
itatively low. However, when the plant is in view, relevance
spikes in the region of the plant.

MDETR overview. MDETR [36] utilizes an encoder-
decoder scheme to associate tokens in an input prompt
referring to parts of an input image, with output boxes.
MDETR utilizes a vision tower and a pre-trained language
tower to project an image, text pair into a joint embedding
space (similar to CLIP as discussed above). Image and text
features are concatenated and passed to a transformer de-
coder head, which outputs boxes. The model is trained on a
dataset of 200,000 images annotated with captions, boxes,
and correspondence between words and boxes.

The model employs three losses during training. (1)

DETR bipartite matching loss without class information:
Following DETR [£], each ground truth box is matched with
its most similar predicted box and an L1 loss is applied. Un-
like DETR, MDETR does not use any class information for
the matching step. (2) A soft-token classification loss: when
classifying a box, the target is a uniform distribution over
all the tokens the box refers to and zero for other tokens.
In this way the box is assigned to potentially many tokens
depending on the ground truth. (3) A contrastive loss in the
bottleneck embedding space: this is analogous to the CLIP
loss discussed above.

To fine-tune MDETR for segmentation, the original
box model is fine-tuned in two stages on the PhraseCut
dataset [80]. First the model is fine-tuned for box predic-
tion discussed above on PhraseCut data, which contains re-
ferring expressions and corresponding regions in the image
(masks and boxes). The weights are frozen and a new seg-
mentation head is trained using Dice/F1 loss and focal loss.

OWL ViT overview. OWL ViT [49] employs a two-stage
training procedure to create an open-vocabulary model.
During the first stage they train a CLIP-like model. How-
ever, while the original CLIP model uses the feature corre-
sponding to a ViT [CLS] token to construct its multi-modal
embedding space, OWL ViT instead pools over patch to-
kens to obtain an image representation. Intuitively, this
encourages the image global feature to encode more local
information from each patch. During the second stage of
training, the pooling layer is removed. The patch tokens are
passed to a linear projection head where they are then dot-
ted against text features to determine class probabilities. An
MLP box-projection head is introduced that predicts a box
for each projected patch token. Note this process and losses
for box fine-tuning are similar to that used by DETR [8].
Stage 1 is trained using 3.6 billion image-text pairs from
the dataset used in LiT [85], using a standard CLIP loss.
Stage 2 is fine-tuned using an agglomeration of existing box
datasets with ~2M images total.

Localization thresholds. Each object localization method
discussed in Sec. 4.3, requires a confidence threshold,
which is standard when using a detector. To tune this thresh-
old, we render 500 images in ROBOTHOR and 500 images
in HABITAT MP3D with box annotations. Critically, we use
the training rooms for these datasets, so none of the scenes
overlap with those seen during downstream navigation test-
ing. See Tab. 6 for thresholds, which are chosen to max-
imize an Fl-score. Because PASTURE is a test set, we do
no hyper-tuning on PASTURE. Instead we use the hyper-
parameters from ROBOTHOR for PASTURE evaluations.
Here we present more information on computing our
Fl-scores. For each image, there are some object cat-
egories OV that appear in that image and other cate-
gories O~ that do not. We consider a predicted bi-

nary localization mask M;r:d a true positive (TP) if



HABITAT ROBOTHOR and
IDs Localizer Arch. PASTURE

CLIP-Ref. B/32 - 0.25

CLIP-Ref. B/16 - 0.125

CLIP-Patch B/32 - 0.875

s CLIP-Patch B/16 - 0.75
A, A CLIP-Grad. B/32 0.375 0.625
., D CLIP-Grad. B/16 - 0.375
‘, <> MDETR B3 - 0.95
OWL B/32 0.2 0.125

OWL B/16 - 0.125

Table 6. Object localization hyperparameters. Hyperparame-
ters returned from a grid-search on object localization performance
on HABITAT and ROBOTHOR train scenes. Note, no hyperparam-
eter tuning was conducted on PASTURE, which is strictly a test set.
Missing entries indicate that we did not evaluate these models due
to lacking performance on other datasets (i.e., on ROBOTHOR).

+

scoret = S (MG © M)/ S My > 0.5, where

pre
ot € O, M§¥ is the ground truth mask, the summation is
over all binary pixel values, and ® is an element-wise prod-
uct that gives binary mask intersection. This is a more le-
nient measure than traditional jaccard index; however, also
more applicable for our navigation setting where only part
of the object needs to be identified correctly to provide a
suitable navigation target. False positives (FP) arise when

0 < scoret < 0.5 or ZMI;;d > 0, where 0~ € O~.

False negatives (FN) arise when > M °" = 0. Fl is com-
puted in the standard way: TP/(TP + 0.5(FP + FN)). In
each domain, F1 is computed per category and then aver-
aged over the categories (i.e., macro F1). This yields F1#
for HABITAT and F1% for ROBOTHOR.

GPT-3.5 [55] prompting details. Recall that we ex-
periment with injecting object-level priors into CoW to
exploit relationships between an object and a scene. We
prompt GPT-3.5, with the following prompt: “where
can one usually find {} in a house \n {}
are usually”, where {} is the name of the object
and \n is the new line character. We set language model
temperature to 0.0 to ensure deterministic outputs (i.e.,
greedy sampling) and set the max token generation length
to 256.

D. Additional Visualization

To give a qualitative perspective on our results, we visu-
alize some key aspects of the method and some trajectories.
In Fig. 8, we show back-projecting 2D object relevancy to
3D, which is a key part of the CoW pipeline. We provide
success and failure sample trajectories in Fig. 9.

(a) Egocentric RGB  (b) CLIP-Grad. B/32  (c) Depth projected
relevance overlay relevance (aggregated)

m W
m‘ '

Figure 8. Projection of object relevance. (a) Egocentric RGB.
Note, a CoW also receives a depth image. (b) Raw CLIP-Grad.
B/32 prediction for the image targeting the “plant” class. (c) Back-
projection of object relevance, aggregated over time, into a 3D
map using agent pose estimates. Areas of high relevence make
natural targets for navigation.

E. Dataset Details

ROBOTHOR and HABITAT MP3D dataset details.
There are 11 HABITAT MP3D and 15 ROBOTHOR
test scenes, in the official validation sets, which we
use as our test sets. HABITAT includes 2,195 evalua-
tion episodes, while ROBOTHOR has 1,800. We con-
sider the following 21 categories in HABITAT: chair,
table, picture, cabinet, cushion, sofa, bed,
chest_of _drawers, plant, sink, toilet, stool,
towel, tv.monitor, shower, bathtub, counter,
fireplace, gym_equipment, seating, clothes.
We consider the following 12 categories in ROBOTHOR:
AlarmClock, Apple, BaseballBat, BasketBall,
Bowl, GarbageCan, HousePlant, Laptop, Mug,
SprayBottle, Television, Vase. Both of
these lists include all objects for the HABITAT and
ROBOTHOR CVPR 2021 object navigation challenges re-
spectively. While the distribution of navigation episodes in
ROBOTHOR is equally split per category, this is not the
case in HABITAT MP3D. We provide testing episode counts
per category in Fig. 10.

PASTURE additional statistics. In Fig. 11, we show word
counts for various color, material, and spatial attributes for
the appearance and spatial class remapping. In Fig. 12,
we repeat similar analysis for hidden objects, reporting the
word frequency for objects that contain the target objects.

PASTURE uncommon object asset licensing. We found
the base instances for the PASTURE uncommon object split
from CGTrader, an online repository where CAD hobby-
ists, artists, and professionals host their models. We choos-
ing our objects, we selected 12 instances that had a “Roy-
alty Free License” and were free to download at the time of
dataset construction. We acknowledge all artists and pro-
vide links to their work:

* “tie-dye surfboard” by adhil3dartist and re-textured to be
rainbow


https://www.cgtrader.com/free-3d-models/watercraft/other/surfboard-eadd6608-11e6-4e77-9ae9-74eb52114dad
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“...whiteboard saying CVPR...” “...bowl in the dresser drawers...” *“...small, red apple”

Figure 9. Trajectory visualization. Frames are egocentric views. Color indicates trajectory progress, where blue indicating trajectory start
and white indicating trajectory end. Target objects are boxed in green, while distractor objects are boxed in red.

Episode Splits by Habitat Category, Total Episodes: 2195

Episode Splits by RoboTHOR Category, Total Episodes: 1800
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Figure 10. HABITAT MP3D and ROBOTHOR episode splits. Distribution of episodes in each CVPR 2021 object navigation challenge

validation set that we adopt as our test set.

e “whiteboard saying CVPR” by w-stone-art and re-
textured to say CVPR

* “llama wicker basket” by eelh

e “green plastic crate” by Snowdrop-2018 and modified to
include only the green create

* “rice cooker” by fleigh and re-textured

* “mate gourd” by mcgamescompany

* “red and blue tricycle” by POLYIPROPS
* “white electric guitar” by demolitions2000
* “espresso machine” by WolfgangNikolas

* “wooden toy airplane” by fomenos

» “gingerbread house” by Empire-Assets

e “graphics card” by Biggie-3D

PASTURE sample prompts. Here we provide some sam-
ple prompts for our appearance, spatial, and hidden object
instance remapping.

* appearance remapping: from “spray bottle” to “small,
green, plastic spray bottle”

* spatial remapping: from “spray bottle” to “spray bottle on
a coffee table near a house plant”

* hidden remapping: from “spray bottle” to “spray bottle
under the bed”

Retrieval of uncommon objects on LAION-5B [68]
We include sample data from CLIP retrieval for both
ROBOTHOR and PASTURE uncommon objects in Fig. 13.
We included the results to show that CLIP is familiar with
the concepts that we chose when creating the uncommon


https://www.cgtrader.com/free-3d-models/interior/interior-office/blank-white-board
https://www.cgtrader.com/free-3d-models/household/other/llama-wicker-basket%20
https://www.cgtrader.com/free-3d-models/household/other/plastic-box-7a6b0bc3-4a54-4744-976a-9097a4fb2677
https://www.cgtrader.com/free-3d-models/household/kitchenware/cooker-02
https://www.cgtrader.com/free-3d-models/food/beverage/argentinian-mate
https://www.cgtrader.com/3d-models/vehicle/bicycle/children-bicycle-659a8f0f-99cc-4022-bf15-4aeb308448eb
https://www.cgtrader.com/free-3d-models/electronics/audio/electric-guitar-747681e7-2cc3-4d90-99f7-cfb054c744b3
https://www.cgtrader.com/free-3d-models/electronics/other/coffee-maker-2276adc2-c1c7-4054-bf06-1cf673c702ce
https://www.cgtrader.com/free-3d-models/vehicle/other/free-wooden-airplane-toy
https://www.cgtrader.com/free-3d-models/food/miscellaneous/christmas-gingerbread-house
https://www.cgtrader.com/free-3d-models/electronics/computer/rtx-3080ti
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Figure 12. Hidden reference object distribution for PASTURE.

1

Word frequency of large objects that target objects are hidden “in’
or “under” in the PASTURE hidden object captions. Names are
based on minimal descriptions needed to identify the object in the
room. For example, “brown sofa” vs. “white sofa”.

split of PASTURE and that qualitative image results rival
those of the more common ROBOTHOR objects. CoW al-
lows us to take advantage of the broad distribution of con-
cepts that CLIP was fit on, without adding additional over-
head associated with navigation fine-tuning.

F. Post-Processing Ablation

Removing post-processing (discussed in Sec. 4.3) de-
creases performance for the best models as seen in Tab. 7.

G. Prompt Ensemble Ablation

To verify the benefits of using the 80 prompt ensemble
created by OpenAl—denoted as prompt ens.—, we com-
pare performance for two models on ROBOTHOR. The
competing approach uses a single prompt for each class
“a photo of a {}”—denoted as photo. As we see in
Tab. 8, prompt ens. boosts SPL by by 0.2 for the CLIP-
Grad. model. These, results suggest that the two variations
of prompting strategies have marginal influence on down-
stream performance. For all experiments in the main paper
that use CLIP, we use the 80 prompt ensemble in conjunc-
tion with the class label specific for a task (e.g., “spray bot-
tle under the bed”).

H. Category-level Results

For completeness we also include salient category-level
results for an OWL (A) and CLIP-Grad. (A) B/32 models
with post-processing for HABITAT MP3D, ROBOTHOR,
and PASTURE. For a comparison for the appearance (Ap-
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Figure 13. Qualitative CLIP retrieval. We conduct CLIP retrieval on LAION-5B [68] using the class names shown in quotes with the
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5B, this figure is included to give an idea of the type of noisy internet image-text data is trained on. Retrieval returns reasonable results for
uncommon objects, suggesting CLIP is able to semantically distinguish these objects.

PASTURE ROBOTHOR
CoW breeds Uncom. Appear. Space Appear. Space Hid. Hid. Avg.
distract distract distract
ID  Localizer Arch. SR SR SR SR SR SR SR SPL SR SPL SR
A CLIP-Ref.  B/32 | 2.8(-0.8) 1.4(+0.8) 1.4(-0.3) 08(+0.2) 14(-0.3) 4725 50(+2.5 | 1.2(+0.3) 25(+0.7) | 1.6 (+0.6) 2.2 (+0.4)
I:I CLIP-Ref.  B/16 | 1.4(+0.0) 1.7(-1.1) 17(1.1) 19(-12) 19(14) 2811 22(+0.3) | 1.7(+0.0) 1.9(-0.5) | 2.4(+0.3) 2.6(-0.1)
A CLIP-Patch B/32 | 10.6 (-7.5) 9.7(-3.6) 6.7(-6.6) 6.4(-2.2) 64(-44) 16.7(-0.8) 16.7(-1.1) | 7.5(-1.5) 10.4(-3.8) | 9.0 (-1.6) 14.3 (-6.0)
|:| CLIP-Patch B/16 | 5.6(-5.0) 7.8(-3.6) 39(39) 50(58 39(42) 10.6(-58) 10.8(-4.8) | 54(-2.3) 68(-4.7) | 82(-1.5) 10.3(-54)
A CLIP-Grad. B/32 | 13.6(-2.5) 10.6(-1.3) 9.2(-2.5) 7.5(22) 72(3.1) 139(-0.5) 12.8(-3.3) | 83(-0.9) 10.7(-2.2) | 9.6(-0.1) 13.8(-1.4)
|:| CLIP-Grad. B/16 | 6.1(-2.0) 5.8(-5.0) 5.0(-3.6) 50(3.6) 4.7(2.0) 83(28) 69(4.5 | 49(-1.8) 6.0(-3.3) | 7.3(-1.3) 8.8(-2.8)
<> MDETR B3 | 3.1(+0.0)0 69(-03) 44(-0.6) 7.2(0.3) 47(+0.0) 7.8(-0.3) 89(+0.0) | 53(-0.1) 6.2(-0.1) | 83(-0.1) 9.8(-0.1)
A OWL B/32 | 23.1(-9.7) 26.1(-0.3) 14.4(-5.0) 183 (-1.1) 11.7(-4.4) 13.9(-5.3) 13.1(-1.3) | 11.1 (-1.5) 17.2(-3.9) | 16.6 (-0.3) 25.4 (-1.3)
|:| OWL B/16 | 258 (-6.1) 23.6(-3.3) 15.3(-3.6) 17.2(-2.2) 125(-2.2) 13.1(-5.0) 139(-1.9) | 11.4 (-1.2) 17.3(-3.5) | 16.2(-1.0) 24.8 (-2.7)

Table 7. Benchmarking CoWs without post-processing on PASTURE for L-ZSON. Compared to the filled (@) IDs presented in Tab. 1,
unfilled (O) row IDs without post-processing perform worse. Bracketed numbers show the deltas relative to the corresponding model with
post-processing. Hence, using only the center pixel as a representative target for navigation helps in general (see Sec. 4.3 for more details

on post-processing).


https://rom1504.github.io/clip-retrieval/

CoW breeds ROBOTHOR

Post | Exp. Strategy ‘ SPL SR

ID Loc. Arch.
A cirGrd B2 v | photo 95 152
A cuPGrd.  B32 v | promptens. 97 152

Table 8. Prompt ablation. For a fixed object localizers (CLIP-
Grad. B/32 with post processing), we ablate over different choices
of prompts. We find that the 80 prompt ensemble (prompt ens.),
introduced by OpenAl, outperforms the prompt: “a photo of a {}.”
(photo) in most cases. However, deltas are not large, suggesting
that this is a less critical design decision in the CoW framework.

PASTURE PASTURE
Appear. Space

A

category SR SPL SR SPL| SR SPL SR SPL

ALARMCLOCK | 6.7 4.0 23.3 10.7| 3.3 33 10.0 3.8
APPLE 6.7 5.7 36.7 17.0(10.0 84 33 1.0
BASEBALLBAT| 0.0 0.0 33 1.2 |33 25 6.7 2.7
BASKETBALL | 6.7 2.8 36.7 24.1|10.0 5.6 36.7 26.8
BowL 33 05 133 59 (100 56 16.7 6.9
GARBAGECAN |26.7 20.2 50.0 31.5|30.0 23.0 40.0 23.2
HOUSEPLANT |20.0 16.9 30.0 20.2|13.3 10.8 40.0 21.9
LAPTOP 13.3 10.6 20.0 11.5|13.3 9.6 20.0 13.7
MUG 100 7.5 46.7 274|100 7.5 133 54
SPRAYBOTTLE | 16.7 13.6 33.3 19.2|16.7 15.8 16.7 6.8
TELEVISION 10.0 10.0 133 89 | 6.7 6.4 200 9.9
VASE 23.3 17.5 10.0 9.1 |13.3 9.8 100 54

Table 9. Attribute object navigation. Appearance-based cap-
tions consistently perform better than spatial captions. OWL con-
sistently performs better than CLIP-Grad.

PASTURE PASTURE
Appear. distract Space distract
A
category SR SPL SR SPL| SR SPL SR SPL
ALARMCLOCK | 3.3 3.0 133 65 |6.7 63 6.7 28
APPLE 10.0 64 100 7.4 |33 33 10.0 4.0

BASEBALLBAT| 0.0 0.0 13.3 45| 0.0 0.0 10.0 8.1
BASKETBALL | 6.7 3.3 20.0 12.6 16.7 94 16.7 9.7
BowL 33 32 16.7 8.5 |10.0 8.6 23.3 12.6
GARBAGECAN [26.7 199 30.0 21.6|13.3 10.5 26.7 18.2
HOUSEPLANT |10.0 6.0 16.7 11.0 [13.3 10.8 23.3 13.7
LAPTOP 16.7 13.6 23.3 11.9|16.7 11.9 16.7 11.8
MuG 6.7 5.1 267 17.8(10.0 7.8 6.7 2.7
SPRAYBOTTLE | 13.3 124 26.7 15.2|16.7 154 20.0 8.0
TELEVISION 6.7 6.6 26.7 155|6.7 33 20.0 12.8
VASE 13.3 10.2 10.0 86 [10.0 6.5 13.3 84

Table 10. Attribute object navigation with distractors. Distrac-
tors consistently hurt performance compared to the no distractor
numbers in Tab. 9, suggesting that models cannot make full use of
remapped classes with attributes.

pear.) and spatial (Space) PASTURE splits, see Tab. 9. For

PASTURE PASTURE
Hidden Hidden distract
A A
category SR SPL SR SPL| SR SPL SR SPL
ALARMCLOCK [26.7 158 6.7 3.0 {20.0 9.9 233 83
APPLE 10,0 95 133 89 |67 47 100 7.9

BASEBALLBAT |13.3 9.2 133 58 [10.0 7.2 33 29
BASKETBALL [10.0 5.1 26.7 15.2(16.7 12.2 20.0 15.0
BowL 16.7 9.2 233 11.9|23.3 15.1 20.0 10.6
GARBAGECAN |13.3 7.8 26.7 13.8|13.3 7.0 16.7 10.9
HoOUSEPLANT |13.3 9.6 16.7 10.8 |16.7 109 16.7 11.6
LAPTOP 10.0 8.1 10.0 8.4 [26.7 20.7 10.0 8.4
MuG 13.3 7.3 33.3 23.8/20.0 12.5 23.3 184
SPRAYBOTTLE |13.3 84 0.0 0.0 [20.0 10.3 0.0 0.0
TELEVISION 16.7 8.0 36.7 22.9|10.0 6.9 16.7 114
VASE 16.7 119 23.3 11.2|10.0 7.0 133 7.0

Table 11. Hidden object navigation category-level results.

PASTURE
Uncom.
A
category SR SPL SR SPL
GINGERBREADHOUSE 200 143 26.7 18.6
ESPRESSOMACHINE 10.0 7.7 46.7 24.6
CRATE 233 182 40.0 27.0
ELECTRICGUITAR 16.7 10.0 46.7 30.8
RICECOOKER 3.3 2.9 20.0 11.6
LLAMAWICKERBASKET | 16.7 12.6 30.0 24.5
WHITEBOARD 63.3 432 300 187
SURFBOARD 26.7 20.6 60.0 389
TRICYCLE 10.0 9.0 533 31.7
GRAPHICSCARD 3.3 2.1 13.3 6.0
MATE 0.0 0.0 0.0 0.0
TOYAIRPLANE 0.0 0.0 26.7 13.7

Table 12. Uncommon object navigation category-level results.

Appear. and Space with distractors (distract), see Tab. 10.
For hidden object with and without distractors see Tab. 11.
For uncommon objects see Tab. 12. For ROBOTHOR see
Tab. 13. For HABITAT see Tab. 14.

I. Additional Failure Analysis

For addition failure analysis on CLIP-Ref., CLIP-Patch,
and CLIP-Grad. see Fig. 14. All models have a ViT-B/32
architecture and apply post-processing. We notice that that
CLIP-Patch and CLIP-Grad. have a higher fraction of ob-
ject localization failure when compared to OWL. For CLIP-
Ref., where performance is in the very low success regime
(e.g., < 3%), we notice less consistent patterns.



(a) CLIP-Ref. A (b) CLIP-Patch A (c) CLIP-Grad. A
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Figure 14. Failure analysis for more models. (a, b, c) All show additional error analysis. When comparing CLIP-Patch and CLIP-Grad.

to OWL shown in Fig. 6, we notice that the former have a higher percentage of object localization failures and also lower success rate
downstream on average.

PASTURE
HABITAT
A A

category SR SPL SR SPL

CHAIR 5.1 2.2 7.4 3.7

AROBOTHOR A TABLE 347 184 212 96

category SR_SPL_ SR SPL Caner ss il 5 a5
ALARMCLOCK | 5.3 3.1 30.7 19.2 CUSHION 5.0 30 121 58
APPLE 153 97 340 19.6 SOFA 0.0 0.0 0.0 0.0
BASEBALLBAT | 4.0 1.5 2.0 0.5 BED 0.0 0.0 0.0 0.0
BASKETBALL 193 148 36.0 253 CHEST_OF_DRAWERS | 0.0 0.0 1.6 0.4
BowL 5.3 40 18.0 111 PLANT 5.7 3.6 2.3 1.3
GARBAGECAN | 30.0 21.0 50.0 322 SINK 24 1.6 24 1.8
HOUSEPLANT 30.7 18.7 36.7 248 TOILET 0.0 0.0 0.0 0.0
LAPTOP 16.0 10.6 200 11.3 STOOL 0.0 0.0 2.9 2.4
MuG 107 50 40.7 255 TOWEL 0.0 0.0 14 0.7
SPRAYBOTTLE 8.0 52 233 138 TV_MONITOR 0.0 0.0 0.0 0.0
TELEVISION 293 169 233 134 SHOWER 7.1 4.4 14 0.9
VASE 8.0 5.8 6.0 5.7 BATHTUB 0.0 0.0 111 3.1
COUNTER 6.1 3.1 0.0 0.0

Table 13. ROBOTHOR category-level results. FIREPLACE 100 S0 33 17
GYM_EQUIPMENT 0.0 0.0 0.0 0.0

SEATING 126 5.2 0.0 0.0

CLOTHES 8.0 4.3 4.0 2.1

Table 14. HABITAT category-level results.
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