
A. Ablation

A.1. Ablation on Self-Ensembling

Since diffusion models themselves are not omnipotent,
we propose a prediction fusion mechanism (Section 3.3) to
automatically choose the better candidate between an im-
age pair, the vanilla test image, and the diffusion model’s
generation. Entropy and confidence seem to be proper sig-
nals used for prediction fusion. According to Tent [56], they
are amazing signals indicating the potential of a prediction.
To some extent, the lower (higher) a prediction’s entropy
(confidence) is, the higher accuracy it would obtain. Based
on the entropy (confidence) of a prediction, we study some
possibilities to utilize the image pair better. Our exploration
includes two parts, hard selection, and soft fusion, which
simply selects an image from the image pair and fuses the
image pair into one new image, respectively. The soft fu-
sion can be operated on both pixel and logit levels.

Hard Selection Since entropy (confidence) can reflect the
real accuracy of a prediction, a simple idea is to pick the im-
age, logits of which have lower entropy (higher confidence)
to make the final prediction.

Early Fusion Apart from the hard selection which selects
an image from two, we can fuse two images on the pixel
level into a new one according to entropy (confidence). We
simply fuse two images, X1 and X2, using the weighted
sum F (a, b; f), where weights are from the entropy (confi-
dence) of two images’ logits, y1 and y2. We use a softmax
operation to ensure the sum of two weights is one.

F (a, b; f) = [a∗f(X1)+b∗f(X2)]/[f(X1)+f(X2)] (7)

It is worth noting that when using confidence, an image’s
weight is from its confidence, conf(·). The new image
is Xnew = F (X1, X2; confidence). As for the entropy
weight, it is from the other image’s entropy, ent(·). The
corresponding new image is Xnew = F (X2, X1; entropy).

Late Fusion Logits are also an excellent perspective for
prediction fusion. We can take a similar strategy as the
early fusion to fuse the logits, rather than image pix-
els. As for confidence fusion, the new image is ynew =
F (y1, y2; confidence). As for the entropy fusion, the new
image is ynew = F (y2, y1; entropy).

As can be seen in Table 6, late fusion shows a better per-
formance in all six models. Experiments have shown that
the prediction fusion can effectively combine information
from both the test image and the diffusion model’s genera-
tion, and make a more accurate precision.

Table 6. Ablation on the design choices of selection module. We
report accuracy on corruption benchmark ImageNet-C at severity
level 5 (most severe). Higher is better.

ResNet-50 Swin-T ConvNeXt-T Swin-B ConvNeXt-B

corruption 18.7 33.1 39.3 40.5 45.6
diffusion 28.4 34.6 39.3 38.6 42.8

entropy 29.7 39.7 43.9 43.9 49.2
confidence 29.6 39.8 44.0 44.1 49.2

entropy fuse 23.8 38.2 42.8 44.0 48.0
confidence fuse 23.8 38.2 42.8 44.0 48.0

entropy sum 29.7 40.0 44.2 44.5 49.4
confidence sum 29.7 39.9 44.2 44.4 49.4
sum (ours) 29.7 40.0 44.2 44.5 49.4

original test 76.6 81.2 82.1 83.4 83.9

The additional evaluation of Self-Ensembling Figure 6
evaluates the self-ensembling among DDA and state-of-the-
art diffusion for adversarial defense (DiffPure). It is shown
that the ensembling leads to better performance for most
corruption types, and that the overall performance improve-
ment is consistent for different image classification mod-
els. DDA is the best on average, even DDA without self-
ensembling improves on DiffPure with self-ensembling,
which shows the generality of our method, since both a
strong domain shift and a weak one can be covered by DDA.

A.2. Ablation on Diffusion Models

We investigate different choices for scaling factor D and
guidance scale w for latent guidance, related results of
which are presented in Table 7 and Table 8. if w is too
small, the guidance of the target image will not take effect.
On the contrary, if w is too large, the shifting domain will
bring a side effect. The refinement range D has the same
effect as w. If D is too small, the corruption on the target
image will interfere the sampling process. If the scaling fac-
tor D is too large, the semantics information will be filtered
by the low-pass filtering operation. The results in Table 7
and Table 8 confirm the effect of the hyper-parameters D
and w.

B. Tent, MEMO, BUFR, and DiffPure

B.1. Implementation

Model adaptation, including Tent, MEMO, and BUFR, is
sensitive to optimization hyper-parameter, especially learn-
ing rate and optimizer type. We also compare with the input
adaptation Methods DiffPure [30] We introduce the hyper-
parameter in this part for the four methods.
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Figure 6. Self-Ensembling reliably improves robustness across corruption types. We evaluate the self-ensembling among DDA and
state-of-the-art diffusion for adversarial defense (DiffPure). Self-Ensembling prevents catastrophic drops (on fog or contrast, for example)
and improves the performance on DDA and DiffPure. DDA is the best on average, even DDA without self-ensembling improves on
DiffPure with self-ensembling.

Table 7. Ablation on choices of scaling factor D with fixed w.
Our default hyper-parameter is in the shadow row. The empirical
results confirm the choice of hyper-parameters in DDA.

w = 6 ResNet-50 Swin-T ConvNeXt-T

2 22.2 29.9 31.2
(a) elastic transformation 4 32.3 38.9 41.2

8 41.6 45.2 48.0

2 9.5 13.4 14.9
(b) glass blur 4 12.0 17.6 19.9

8 19.7 26.0 29.8

2 50.4 54.5 58.7
(c) shot noise 4 48.7 53.2 57.3

8 40.4 44.6 48.7

Tent We augment the entropy loss Lent from Tent [56]
with the additional diversity loss Ldiv , following the prac-
tice of SHOT [23]. The test-time training objective is the
linear combination of these two losses. L = Lent + Ldiv:

Lent = −Σcp(ŷc) log(p(ŷc)

Ldiv = DKL(ŷ ||
1

C
1C)− log(C)

(8)

where C is the number of classes. p(ŷc) denotes the c-th
category probability in prediction ŷ. 1C is an all-one vector
with C dimensions. Therefore, 1

C1C indicates that every

Table 8. Ablation on choices of refinement range w with fixed
D. Our default hyper-parameter is in the shadow row. The empiri-
cal results confirm the choice of hyper-parameters in DDA.

D = 4 ResNet-50 Swin-T ConvNeXt-T

3 38.0 42.3 44.9
(a) elastic transformation 6 32.3 38.9 41.2

9 27.8 35.2 37.9

3 17.9 24.7 28.7
(b) glass blur 6 12.0 17.6 19.9

9 9.2 13.4 15.2

3 48.2 50.5 54.1
(c) shot noise 6 48.7 53.2 57.3

9 40.7 49.1 54.4

class has the same evenly distributed 1
C probabilities. DKL

is the notation of Kullback-Leibler divergence.
Since most recent architectures, such as ViT [3], do not

have BatchNorm layers anymore, we thus extend the train-
ing parameter to the whole parameter except the final clas-
sification layer. As for ResNet-like backbones, such as
ResNet-50 [8], we choose SGD as an optimizer with a learn-
ing rate 0.001, momentum 0.9, and weight decay 0.0001.
As for Transformer-like backbones, such as Swin-T [25]
and ConvNeXt-T [26], we choose AdamW as an optimizer
with a learning rate of 0.00001, weight decay 0.05. The



reason behind the difference in optimizer is to follow the
optimizer choice of the corresponding ImageNet training
recipe.

Since the purpose of test-time adaptation is to equip the
recognition model with a simple yet effective way to adapt
itself, we do not change the hyper-parameter for either sin-
gle or mixed domain settings. Also, there is no prior knowl-
edge of what test domain is before the model’s deployment.
We cannot choose the best hyper-parameter to accompany
the test-time sampling policy, batch size, etc. We observe
that model adaptation is highly sensitive to the choice of op-
timization hyper-parameters. The ablation of learning rate
and optimizer type could be found in Figure 7 and Figure 8.

MEMO Following the official repository of MEMO [58],
we choose SGD as the optimizer with a learning rate of
0.00025. We have also explored the optimizer type and lr
for different models and experiments show that the official
setting is the best.

BUFR Since the official repository of BUFR [5] did not
conduct the experiments on ImageNet-C with ResNet-50,
we choose SGD as the optimizer with a learning rate of
0.001. The epochs per block is 3. Trained with ordered
data, the average accuracy for BUFR is 2.8% / 17.9% ac-
curacy when batch size is 1 / 64. When the class order is
fixed, and the batch size is 64, BUFR achieved 4.2% / 3.4%
with mixed/unmixed types. When the class order is shuffled,
and the batch size is 64, BUFR achieved 4.3% / 8.3% with
mixed/unmixed types. The results demonstrate that the lim-
ited, ordered, or mixed data does affect the training process
and the classification accuracy.

DiffPure DiffPure [30] simply adds a given amount of
noise and then reverses to t = 0. Following the official
repository of DiffPure, we set the hyperparameter t = 150

B.2. Results

Benchmark Evaluation (Independent Adaptation): Tent
and DDA Table 9 depicts the performance of Tent [56]
and our DDA in 8 models. The first models, ResNet50,
Swin-T, and ConvNeXt-T, are already mentioned in Sec 4.1.
Here we additionally provide more experiments in much
larger models, Swin transformer Base (Swin-B) and Con-
vNeXt Base (ConvNeXt-B). It is worth noting that we pro-
vide two versions of base models: 1) trained with ImageNet-
1K only (denote as Swin-B and ConvNeXt-B), 2) pretrained
with ImageNet-21K first and then finetuned with ImageNet-
1K (denote as Swin-B* and ConvNeXt-B*). When the
batch size equals one, DDA can beat Tent easily accord-
ing to its advantage in tackling insufficient sampling. When
the categories of test images are not shuffled, DDA still has

Table 9. DDA is reliably more robust on benchmark evaluation
(independent adaptation) with fixed and shuffled class order.
Deployment may supply target data in various ways. To explore
these regimes, we vary batch size and whether or not the data is or-
dered by class. We compare episodic adaptation by input updates
with DDA (ours) and source-only test baseline against cumulative
adaptation with Tent. DDA and source-only are invariant to these
differences in the data. However, Tent is highly sensitive to batch
size and order, and fails in the more natural data regimes.

Class Order Batch Size ResNet-50 Swin-T ConvNeXt-T Swin-B ConvNeXt-B Swin-B* ConvNeXt-B*

7
1 9.8 25.3 38.2 34.9 34.5 44.3 46.3

64 10.4 7.6 30.5 7.3 34.5 18.8 44.3

3
1 11.4 25.6 35.6 34.5 45.8 43.9 46.3

64 37.8 50.6 54.3 57.5 59.1 64.3 67.7

Source-Only
N/A

18.7 33.1 39.3 40.5 45.6 51.6 51.7
DDA (ours) 29.7 40.0 44.2 44.5 49.4 54.5 55.4

Table 10. DDA is reliably more robust when the target data is
limited, ordered, or mixed. Deployment may supply target data
in various ways. To explore these regimes, we vary batch size and
whether or not the data is ordered by class or mixed across cor-
ruption types. We compare episodic adaptation by input updates
with DDA (ours) and by model updates with MEMO along with
cumulative adaptation by Tent. DDA and MEMO are invariant to
these differences. However, Tent is highly sensitive to batch size
and order, and fails on ordered classes and mixed types.

Method Mixed
Classes

Mixed
Types Batch Size ResNet-50 Swin-T ConvNeXt-T

Source-Only

N/A N/A

18.7 33.1 39.3
MEMO [58] 24.7 29.5 37.8
DiffPure [30] 16.8 24.8 28.8
DDA (ours) 29.7 40.0 44.2

Tent (Online)

7 7 1 / 64 0.1 / 0.4 2.8 / 2.3 10.5 / 9.6
7 3 1 / 64 0.1 / 0.3 8.0 / 2.2 18.8 / 6.5
3 7 1 / 64 0.1 / 22.6 3.0 / 41.0 11.0 / 50.1
3 3 1 / 64 0.1 / 6.5 8.5 / 36.9 18.9 / 47.4

Tent (Offline)

7 7 1 / 64 2.2 / 0.4 0.2 / 0.2 0.1 / 1.4
7 3 1 / 64 1.6 / 0.5 0.2 / 0.5 0.3 / 0.5
3 7 1 / 64 3.0 / 7.6 0.1 / 43.3 0.2 / 48.8
3 3 1 / 64 2.3 / 3.9 0.3 / 44.1 0.3 / 51.9

much better performance, even with the larger state-of-the-
art architectures.

Challenge Exploration (Joint Adaptation): Offline Tent
In Table 10, we provide a more detailed comparison be-
tween episodic, online, and offline model adaptation perfor-
mance. In the first group of rows, we evaluate the episodic
setting, in which adaptation and prediction are indepen-
dent across inputs. In particular, the episodic source-only,
MEMO, DiffPure, and DDA methods do not depend on any
data except for each input in isolation. In the second group
of rows we evaluate model adaptation by Tent in the on-
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Figure 7. DDA is invariant to learning rate while Tent is extremely sensitive on benchmark evaluation (independent adaptation). To
analyze sensitivity to the learning rate we measure the average robustness of independent adaptation across corruption types. DDA does
not depend on these factors while Tent fails without the proper tuning on learning rate.
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Figure 8. DDA is invariant to learning rate while Tent is extremely sensitive on challenge exploration (joint adaptation).

line setting, in which adaptation and prediction are done per
batch, and adaptation updates persist across batches. (This
is the setting reported in Table 3 of the main paper, as it is
the recommended setting for Tent.) In the third group of
rows, we evaluate model adaptation by Tent in the offline
setting, in which the method first adapts to the entire test
set, and then makes predictions for each input. In this set-
ting, Tent first learns from all of the data but then makes pre-
dictions with a single model that cannot specifically adapt
to each batch. Whether online or offline, Tent is sensitive to
the order of the data, and fails when data arrive one by one
(with a batch size of one) or when classes are not mixed by
shuffling.

Challenge Exploration (Joint Adaptation): fixed and
shuffled class order As shown in Figure 9 and Figure 10,
the shuffled class order is essential to Tent, especially for
models with low capacity. Even for big models, the poten-
tial of Tent as the batch size increases is suppressed largely.

C. More datasets
ImageNet-W ImageNet-W [22] is an evaluation set based
on ImageNet for the watermark. The authors found that
the watermark as a shortcut affects nearly every modern vi-
sion model. In our experimental settings, the watermark
can be regarded as a common corruption by human activi-
ties, as a supplement dataset of the unexpected corruptions,
ImageNet-C (IN-C) [10] and ImageNet-C (IN-C̄) [27]. Fig-
ure 11 shows that DDA can effectively remove the water-
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Figure 9. DDA is reliably more robust on challenge exploration (joint adaptation) with shuffled class order. Deployment may supply
target data in various ways. To explore these regimes, we vary the batch size and whether or not the data is ordered by class or mixed across
corruption types. We compare episodic adaptation by input updates with DDA (ours), DiffPure, and by model updates with MEMO against
cumulative adaptation with offline and online Tent. DDA, DiffPure, and MEMO are invariant to these differences in the data. However,
Tent is highly sensitive to batch size and order, and fails in the more natural data regimes.
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Figure 10. DDA is reliably more robust on challenge exploration (joint adaptation) with fixed class order.

mark to avoid shortcut reliance. Our experiments, con-
ducted on ImagenNet-W using ResNet-50, showed that
DDA achieved 58.3% accuracy, a significant improvement
over the baseline accuracy of 47.4%. Both the visualiza-
tions and model performance demonstrate that DDA can
enhance the robustness of the model against watermark cor-
ruption.

ImageNet-R ImageNet-R [9] is an evaluation set based
on ImageNet for rendition, containing cartoons, embroi-
dery, graphics, paintings, sketches, tattoos, toys, and so on.
Our qualitative experiments in Figure 12 depict the perfor-
mance of DDA on rendition to real images. Although the
adapted images still reserve the original background, real-

world characteristics have been added to the main part of
the picture. DDA easily concentrates on the core domain
shift in the renditions, especially for the gap between the
2D and 3D features.

D. Visualization

Progressive generation on ImageNet-C and ImageNet
Figure 13 illustrates how diffusion models denoise and re-
construct the given corrupted images. Here we take elastic
transformation, glass blur, and shot noise as the represen-
tative corruption for the digital artifact, natural blur, and
common noise. We observe that diffusion models are able
to clean up the “local”, high-frequency noises, i.e. Gaus-
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Figure 11. Visualization of generated images with DDA output on ImageNet-W.
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Figure 12. Visualization of generated images with DDA on ImageNet-R.

sian noise, pixelate, etc. As for “global”, low-frequency
corruption, i.e. fog, snow, etc., diffusion models failed to
recover the original version. One reason behind this phe-
nomenon could be these low-frequency corrupted images
are treated as natural samples during ImageNet training. In
other words, the diffusion model is trained on ImageNet,
which may cover several augmentations including these
low-frequency corruptions.

Figure 14 visualizes the procedure given the original Im-
ageNet validation images. We observe that images after dif-
fusion are almost the same as the original ones. In general,
the reconstructions from diffusion models look similar to
the original ImageNet validation images, which indicates
the effectiveness of the leveraged generative models. It is
worth noting the comparison between the output and the
original in the second row, peacock. Diffusion models hallu-
cinate more details on the left that do not exist in the original
input image.

Qualitative results on success and failure Cases We
visualize success and failure cases across corruptions on
ImageNet-C as shown in Figure 15 and Figure 16. DDA
forces the model to preserve the global structural informa-
tion to avoid semantic drift, leading to a drawback that it

may fail to adapt images from certain domains. While DDA
performs well when projecting most high-frequency/local
corruptions (e.g., Gaussian noise, impulse noise, jpeg en-
coding, . . . ), it fails for a few low-frequency/global corrup-
tions (e.g., frost, fog, brightness adjustment, . . . ). However,
our self-ensembling scheme effectively detects these cases
to avoid significant drops in accuracy.
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Figure 13. Visualization of generated images with diffusion models, given highest severity corrupted images during the test time.
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Figure 14. Visualization of the progress of image generation with diffusion models, given the original images during the test time.
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Figure 15. Visualization of positive generated images with diffusion models, given highest severity corrupted images during the test time.
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Figure 16. Visualization of negative generated images with diffusion models, given highest severity corrupted images during the test time.
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