Appendix: Backdoor Defense via Adaptively Splitting Poisoned Dataset

Kuofeng Gao'? Yang Bai 2*, Jindong Gu*! Yong Yang*, Shu-Tao Xia!>*

! Tsinghua University

* Tencent Security Platform Department

2 Tencent Security Zhuque Lab

3 University of Oxford
3> Peng Cheng Laboratory

gkf2l@mails.tsinghua.edu.cn, {mavisbai,coolcyang}@tencent.com

jindong.gu@eng.ox.ac.uk, xiast@sz.tsinghua.edu.cn

A. Algorithm outline
The algorithm outline of ASD is listed as Algorithm 1.

B. Implementation details

In summary, we use the framework PyTorch [34] to im-
plement all the experiments. Note that the experiments
on CIFAR-10 and GTSRB dataset are run on a NVIDIA
GeForce RTX 2080 Ti GPU with 11GB memory and the
experiments on ImageNet and VGGFace2 dataset are on a
NVIDIA Tesla V100 GPU with 32GB memory.

B.1. Datasets and DNN models

The details of datasets and DNN models in our experi-
ments are summarized in Table 1. Specially, we randomly
choose 30 classes from ImageNet and VGGFace2 dataset to
construct a subset due to the limitation of the computational
time and costs.

B.2. Attack setups

Training setups. On the CIFAR-10 [24] and GTSRB [37]
dataset, we perform backdoor attacks on ResNet-18 [20] for
200 epochs with batch size 128. We adopt the stochastic
gradient descent (SGD) [44] optimizer with a learning rate
0.1, momentum 0.9, weight decay 5 x 10~%. The learning
rate is divided by 10 at epoch 100 and 150. On the ImageNet
[14] dataset, we train ResNet-18 for 90 epochs with batch
size 256. We utilize the SGD optimizer with a learning rate
0.1, momentum 0.9, weight decay 10~%. The learning rate
is decreased by a factor of 10 at epoch 30 and 60. The image
resolution will be resized to 224 x 224 x 3 before attaching
the trigger pattern. On VGGFace2 [10] dataset, the batch
size is set to 32 and the targeted model is DenseNet-121
[22]. Other settings are the same as those used in training
the models on ImageNet dataset.

Settings for BadNets. As suggested in [19,23], we set a
2 x 2 square on the upper left corner as the trigger pattern

*Equal contribution.
Corresponding author.

Table 1. Summary of datasets and DNN models in our experi-
ments.

Dataset # Input size # Classes # T rauing #. Testing Models
images images
CIFAR-10 3 x 32 x 32 10 50000 10000 ResNet-18

GTSRB 3 x 32 x 32 43 39209 12630 ResNet-18
ImageNet 3 x 224 x 224 30 38859 1500 ResNet-18

VGGFace2 3 x 224 x 224 30 9000 2100 DenseNet-121

on CIFAR-10 and GTSRB. For ImageNet and VGGFace2,
we use a 32 x 32 apple logo on the upper left corner. The ab-
lation study for different trigger sizes and trigger locations
has been shown in Appendix H.

Settings for Blend. Following [13,23], we choose “Hello
Kitty” pattern on CIFAR-10 and GTSRB and the random
noise pattern on ImageNet and VGGFace?2. The blend ratio
issetto 0.1.

Settings for WaNet. The original implementation of
WaNet [32] assumes that the attacker can control the train-
ing process. To apply WaNet in our poisoning-based at-
tack threat model, we follow [23] to directly use the default
warping-based operation to generate the trigger pattern. For
CIFAR-10 and GTSRB, we set the noise rate p,, = 0.2, con-
trol grid size k = 4, and warping strength s = 0.5. For Im-
ageNet and VGGFace2, we choose the noise rate p,, = 0.2,
control grid size k = 224, and warping strength s = 1.
Settings for TAB. IAB [33] also belongs to the control-
training backdoor attacks as WaNet [32]. As suggested
in [26], we first reimplement the IAB attack as the origi-
nal paper [33] to obtain the trigger generator. Then we use
the trigger generator to generate the poisoned samples in
advance and conduct a poisoning-based backdoor attack.
Settings for Refool. Following [27, 30], we randomly
choose 5,000 images from Pascal VOC [16] as the candidate
reflection set R qnq and randomly choose one of the three
reflection methods to generate the trigger pattern during the

Algorithm 1: ASD Backdoor Defense
Input

: A model fg with randomly initialized parameters
6 and a poisoned training dataset with C classes
D = {(x;,y:)}}V,. The clean dataset pool D¢
with labels and the polluted dataset pool Dp
without using labels. Stage 1, Stage 2 and Stage
3 will be ended at Ty, T and T5. £4(+) and
L5(+) are chosen as SCE loss and CE loss.

Output: A clean model fg without backdoor behavior.

1 # Initialization

2 Initialize 6 randomly;

3 while T' < T3 do

4 # Class—-aware loss-guided split

if T < T} then

D¢ +— clean seed samples;

for Class K =0,...,C —1do

Calculate £1(fp) for {(x,y)|ly = K} in D;
Move T'/t x n samples in Class K with lowest
L1(fe) to D¢

N=TN-CRE B |

10 end
11 # Class—agnostic loss—guided split
12 else if I' < T5 then

13 De +
14 Calculate £, (fg) for the entire D;
15 Move a% samples with lowest L1 (fg) to D¢;

16 # Meta-split
17 else if T' < T3 then

18 Do +— o

19 0« 0,

w | | 08— BV La(fo (@) y)

21 Calculate £, (fg) for the entire D;

22 Calculate £;(fo-) for the entire D;

23 Move 7% samples with lowest L1 (fo) — L1(fe’)
to D¢,

24 end

35 | Dp={z|(z,y) € D\Dc};
26 Train the model fg by semi-supervised learning with
the below objective function:

meinﬁ(DC,Dp;H)

27 end

backdoor attack.

Settings for CLB. As the suggestions in [23, 38], we adopt
projected gradient descent (PGD) [31] to generate the ad-
versarial perturbations [2—0, 17, 18,29] within [, ball and
set its maximum magnitude € = 16, step size 1.5, and 30
steps. The trigger pattern is the same as that in BadNets.
More experiments of different settings for CLB are listed in
Appendix H.

B.3. Defense setups

Settings for FP. FP [28] consists of two steps: pruning and
fine-tuning. (1) We randomly select 5% clean training sam-
ples as the local clean samples and forward them to obtain
the activation values of neurons in the last convolutional
layer. The dormant neurons on clean samples with the low-
est a% activation values will be pruned. (2) The pruned
model will be fine-tuned on the local clean samples for 10
epochs. Specially, the learning rate is set as 0.01, 0.01, 0.1,
0.1 on CIFAR-10, GTSRB, ImageNet and VGGFace2. Un-
less otherwise specified, other settings are the same as those
used in [28].

Note that FP is sensitive to its hyper-parameters and we

search for the best results by adjusting the pruned ratio
a% € {20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%} for
six backdoor attacks on four datasets.
Settings for NAD. NAD [27] also aims to repair the back-
doored model and need 5% local clean training samples.
NAD contains two steps: (1) We first use the local clean
samples to fine-tune the backdoored model for 10 epochs.
Specially, the learning rate is set as 0.01, 0.01, 0.1, 0.1 on
CIFAR-10, GTSRB, ImageNet and VGGFace2. (2) The
fine-tuned model and the backdoored model will be re-
garded as the teacher model and student model to perform
the distillation process. . Unless otherwise specified, other
settings are the same as those used in [27].

We find that NAD is sensitive to the hyper-parameter 3 in

the distillation loss. Therefore, we search for the best results
by adjusting the hyper-parameter 3 from {500, 1000, 1500,
2000, 2500, 5000, 7500, 10000} for six backdoor attacks
on four datasets.
Settings for ABL. ABL [26] contains three stages: (1) To
obtain the poisoned samples, ABL first train the model on
the poisoned dataset for 20 epochs by LGA loss [26] and
isolate 1% training samples with the lowest loss. (2) Con-
tinue to train the model with the poisoned dataset after the
backdoor isolation for 70 epochs. (3) Finally, the model
will be unlearned by the isolation samples for 5 epochs. The
learning rate is 5 x 10~* at the unlearning stage. Unless oth-
erwise specified, other settings are the same as those used
in [26].

We find that ABL is sensitive to the hyper-parameter ~y
in LGA loss. We search for the best results by adjusting the
hyper-parameter + from {0, 0.1, 0.2, 0.3, 0.4, 0.5} for six
backdoor attacks on four datasets.

Settings for DBD. DBD [23] contains three independent
stages: (1) DBD uses SimCLR [12] to perform the self-
supervised learning for 1,000 epochs. (2) Freeze the back-
bone and fine-tune the linear layer by supervised learning
for 10 epochs. (3) Adopt the MixMatch [8] to conduct the
semi-supervised learning for 200 epochs on CIFAR-10 and
GTSRB for 90 epochs on ImageNet and VGGFace2. Un-
less otherwise specified, other settings are the same as those

Table 2. The clean accuracy (ACC %) and the attack success rate (ASR %) of five backdoor defenses against six backdoor attacks on
VGGFace2. Best results among five backdoor defenses are highlighted in bold.

Attack No Defense FpP NAD ABL DBD ASD (Ours)
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
BadNets 91.7 99.9 91.5 100 56.1 6.5 91.2 19.6 91.6 04 90.9 0.5
Blend 90.9 99.9 87.1 96.0 50.8 7.3 90.1 96.7 91.5 0.7 91.8 0.6
WaNet 91.8 99.2 89.2 334 50.4 42 92.6 74.6 89.1 0.8 91.2 0.8
IAB 91.2 99.6 90.6 97.2 43.1 5.5 91.3 59.7 90.1 2.5 92.1 0.4
Refool 90.7 98.3 90.4 98.4 53.0 3.1 91.1 51.1 91.2 0.3 90.4 0.5
CLB 91.8 98.9 90.9 99.9 40.0 33 91.3 0 90.4 0.3 91.8 0.2
Average 91.4 99.3 89.9 87.5 48.9 5.0 91.3 50.3 90.6 0.8 914 0.5

Table 3. The clean accuracy (ACC %) and the attack success rate (ASR %) of five backdoor defenses against SSBA backdoor attack and
all2all attack on CIFAR-10. Best results among five backdoor defenses are highlighted in bold.

Attack No Defense FP NAD ABL DBD ASD (Ours)
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

SSBA 94.3 100 94.3 100 89.6 2.7 89.2 1.2 83.2 0.5 92.4 2.1

all2all 94.2 89.6 90.9 54.3 85.1 2.0 86.3 2.7 91.6 0.2 91.7 3.6

Table 4. The clean accuracy (ACC %) and the attack success rate
(ASR %) of three backdoor defenses against six backdoor attacks
on CIFAR-10. Best results are highlighted in bold.

Attack CutMix DPSGD ASD (Ours)
ACC ASR ACC ASR ACC ASR

BadNets 95.8 99.9 55.9 10.9 93.4 1.2
Blend 94.9 99.3 56.7 37.0 93.7 1.6
‘WaNet 95.1 99.9 55.1 15.8 93.1 1.7
IAB 94.9 100 85.9 99.7 93.2 1.3
Refool 95.4 99.9 554 59.2 93.5 0

CLB 96.1 1.1 55.7 7.6 93.1 0.9
Average 95.4 83.4 60.8 38.4 933 1.1

used in [23]. Since DBD is a stable backdoor defense and

not sensitive to its hyper-parameter, we directly use the de-
fault hyper-parameters and report the results.

Settings for our ASD. We adopt MixMatch [8] as our semi-
supervised learning framework and utilize Adam optimizer
with a learning rate 0.002 and batch size 64 to conduct the
semi-supervised training. The temperature 7' is set as 0.5
and the weight of unsupervised loss A, is set as 15. We
treat the clean data pool D¢ as a labeled container and the
polluted data pool Dp as unlabeled. Our three stages are
performed ended at 77 = 60, T, = 90 and 75 = 120 on
CIFAR-10 and ImageNet and 75 = 100 on GTSRB.

In the first stage, we fixed the clean seed samples in D¢
and these clean seed samples will not be removed in the
first stage. The clean seed samples consist of 10 samples
per class. Besides, we adopt class-aware loss-guided data
split with £;(+) to progressively increase the number of the
seed samples. The number of each class will add n = 10
at every t = 5 epochs. Specially, £1(+) is chosen as sym-
metric cross-entropy (SCE) [40], as suggested in [23]. In
the second stage, we use class-agnostic loss-guided data
split to choose a% = 50% samples with the lowest £;(-)

losses into D¢ In the third stage, we adopt the meta-split to
split 7% = 50% samples with the lowest £1(fg) — L1(fo)
losses into De. In meta-split, we adopt stochastic gradient
descent (SGD) optimizer with the learning rate § = 0.015
and batch size 128 to perform one supervised learning for
fo to obtain a virtual model fg-. For the virtual model, we
update half of the layers of its feature extractor and its linear
layer. Note that fg is only used for data splits and will not
be involved in the followed training process. Besides, we
adaptively split the poisoned training dataset every epoch
and the polluted data pool Dp is formed with the remaining
samples in the poisoned training dataset except the samples
in the clean data pool D¢.

C. Results on VGGFace2 dataset

We conduct the experiments on VGGFace?2 [10] dataset
and set the model architecture as DenseNet-121 [22]. The
results against six backdoor attacks are shown in Table 2.
We also search for the best results for FP, NAD and ABL
in different parameters. Besides, we set the learning rate of
supervised training in the meta-split of ASD as 0.02. Un-
less otherwise specified, other settings remain unchanged.
Compared with the previous four backdoor defenses, our
ASD can still achieve higher ACC and lower ASR on aver-
age, which verifies the superiority of our proposed ASD.

D. Results about more backdoor attacks

In addition to six backdoor attacks in our main experi-
ment, we also test our ASD on another two backdoor attack
paradigms, i.e., Sample-specific backdoor attack (SSBA)
[25], and all2all backdoor attack (all2all). For SSBA, we
follow [25] to use the same encoder-decoder network to
generate the poisoned samples. Note that all the backdoor

Clean Samples

Poisoned Samples

Purified Samples @

Dog Cat Dog
I I | |
w B WA - & @ &
Dog | Dog | Dog Cat | Cat | Cat
(0.23) | (0.62) | (0.89) 0.21) | (0.53) | (0.87)
| | I I
n . B | | 4
DBD 3 I 1y I 1a DBD ‘ I ‘ I ‘
Dog I Dog | Dog Cat | Cat | Cat
0.18) | (0.54) I (0.74) (0.16) | (0.43) I (0.75)
I I | |
| I) | = I =
ASD (Ours) ﬂ | “ | “ ASD (Ours) !‘ | w | w
Dog l Dog | Dog Horse l Dog l Dog
1 sy L s Epoch 1) 13 1 7)) Epoch
(a) Clean Samples (b) Poisoned Samples

Figure 1. The label and the logit score for the clean samples and poisoned samples on the model trained by ABL, DBD and our ASD
against IAB. Our ASD can purify the poisoned samples successfully during the training process.

attacks in the above experiments belong to the all2one at-
tack and they relabel the poisoned samples to a target label.
For the all2all attack, we relabel samples from class 7 as
class (¢4 1) and we adopt IAB [33] as the trigger pattern, as
suggested in [42]. The results are shown in Table 3, which
verifies that ASD can defend against these two backdoor
attacks successfully.

E. Results about more backdoor defenses

We evaluate another two training-time backdoor de-
fenses, i.e., CutMix-based backdoor defense (CutMix)
[9] and differential privacy SGD-based backdoor defense
(DPSGD) [15]. For CutMix, we implement it as the de-
faulted setting in the original paper [9]. For DPSGD, we set
the clipping bound C' = 1 and select the best noise scale o
by the grid-search. We demonstrate the results in Table 4
and our ASD can still behave better than those two defenses
on average. Besides, we also show the purification process
of our ASD in Fig. 1.

F. Combination between DBD and our meta-
split

We show more results about combining our meta-split

with DBD in Fig. 2. From the overall results, we can ob-

serve that DBD can achieve 91+% ACC and 4—% ASR and
its training time will reduce a lot with our meta-split.

G. Comparison between DBD and our ASD

We choose 5,000 samples with the largest £1(-) losses
chosen by the model as clean hard samples. We show more

Table 5. The clean accuracy (ACC %), the attack success rate
(ASR %) and the corresponding split rate of poisoned samples on
CIFAR-10 for WaNet. Our ASD can achieve better results and a
lower split rate of poisoned samples.

Split rate of poisoned samples ACC ASR

ABL 33.2 84.1 22
ASD (Ours) 1.2 93.1 1.7

Table 6. The clean accuracy (ACC %), the attack success rate
(ASR %) and the corresponding split rate of poisoned samples
on CIFAR-10 for IAB. Our ASD can achieve better results and
a lower split rate of poisoned samples.

Split rate of poisoned samples ACC ASR

DBD 9.2 91.6 100
ASD (Ours) 1.1 93.2 1.3

results about the number of clean hard samples and poi-
soned samples to be split in Do for DBD and our ASD in
Fig. 3.

Furthermore, we list the split rate (%) of poisoned sam-
ples in D¢ along with the ACC (%) / ASR (%). Note that
we report the split rate in the maximum value during the
whole defense process. Here, we compare our ASD with
ABL for WaNet in Table 5 and DBD for IAB in Table 6.
Our ASD can achieve the lower split rates, higher ACCs and
lower ASRs. Specially, the split rate of poisoned samples in
D¢ is less than 1.2% during the whole ASD training.

H. Ablation study on attack settings

Different target labels. We evaluate our ASD using differ-
ent target labels y; € {0,1,2,3,4}. The results are shown

90 1

3])
< 801 <

754 1 — DBD 751 — 8D s F — 8D VLR I — DBD

: : DBD with 3 : DBD with : : DBD with : : DBD with
Our Meta-split Our Meta-split Our Meta-split Our Meta-split
70 — T T T 70 U T T T 70 s T T T 70 . T T T
1 20 40 60 80 100 1 20 40 60 80 100 1 20 40 60 80 100 1 20 40 60 80 100
Epoch Epoch Epoch Epoch
(a) BadNets (b) Blend (c) WaNet (d) CLB

Figure 2. Apply our meta-split to DBD on CIFAR-10 for four backdoor attacks, i.e., BadNets, Blend, WaNet, and CLB. Our proposed
meta-split can help accelerate DBD.

4000 q 35004

3500 40001
35001 1
30001
3000 A 3000
2500 3000 4
+ 2500 L 25001 . -
g 2 8 2000 g
IS 20001 —— DBD Clean Hard Samples £ 2000 DBD Clean Hard Samples —— DBD Clean Hard Samples € 20001 —— DBD Clean Hard Samples
>] —— ASD Clean Hard Samples > 15001 —— ASD Clean Hard Samples 3 15001 —— ASD Clean Hard Samples =] —— ASD Clean Hard Samples
Z 1500 ——— DBD Poisoned Samples | 2 ——— DBD poisoned Samples | = ——— DBD Poisoned Samples | 2 ——— DBD Poisoned Samples
1000 4 ——=—ASD Poisoned Samples 10004 ——=—ASD Poisoned Samples 1000 4 ——=—ASD Poisoned Samples 1000 ——=— ASD Poisoned Samples
500 \/\/\/"\/\/"\/\/\/\/\ 500 500 M
————————————
(B AR RS S I NE A . 0+ =2zmelinrmnn? T s S s [F T SR R 0t =memmmzza=llena e =0
1 5 10 15 20 25 30 1 5 10 15 20 25 30 1 5 10 15 20 25 30 1 5 10 15 20 25 30
Epoch Epoch Epoch Epoch
(a) BadNets (b) Blend (c) WaNet (d) CLB

Figure 3. The number of clean hard samples and poisoned samples to be split in D¢ for DBD and our ASD on CIFAR-10 for four backdoor
attacks, i.e., BadNets, Blend, WaNet, and CLB. Our ASD can select clean hard samples.

Table 7. The clean accuracy (ACC %) and the attack success rate Table 9. The clean accuracy (ACC %) and the attack success rate
(ASR %) on CIFAR-10 for different target labels. Our ASD can (ASR %) on CIFAR-10 for different poisoned rates for CLB. Our
work well under different target labels. ASD can work well under different poisoned rates for CLB.
Target Label y=0 yu=1 ye=2 y+=3 yt=4 Poisoned rate 0.6% 2.5% 5%
ACC 928 93.1 92.7 93.4 93.2 ACC 93.4 93.1 93.1
BadNets — oR 11 04 5 12 0.7 CLB (e = 16) ASR 31 0.9 0
ACC 935 93.5 93.4 93.7 93.7 ACC 94.1 93.4 93.3
Blend s 09 03 T1 6 12 CLB (e = 32) ASR 2.0 5 3
ACC 938 92.6 92.4 93.1 93.5
WaNet ' 3SR 1.1 06 T4 17 21
ACC 934 03.7 008 03.1 932 Table 10. The clean accuracy (ACC %) and the attack success rate
CLB ASR 0.7 1.4 1.1 0.9 0.4 (ASR %) on CIFAR-10 for different trigger locations of BadNets.
Our ASD can work well under different trigger locations of Bad-
Table 8. The clean accuracy (ACC %) and the attack success rate Nets.

(ASR %) on CIFAR-10 for different poisoned rates. Our ASD can
work well under different poisoned rates.

Upper Upper Lower Lower

Location left right left right Ccenter
Poisoned rate 1% 3% 0% 15% 20% No ACC 949 937 945 94.1 93.8
ACC 03.8 934 942 923 93.6 Defense ASR 100 99.7 99.8 100 100
BadNets ASR 1] W) 3 11 0.9 ASD ACC 934 93.1 93.7 92.8 93.6
ACC 938 957 96 955 955 (Ours) ~ASR 12 1 0.9 08 17
Blend ASR 39 1.6 12 8 17
ACC 938 931 935 936 932
WaNet ASR 356 17 0.9 16 1.9

in Table 7, which verifies the effectiveness of the proposed
ASD.

Different poisoned rates. We test our ASD under different

Table 11. The clean accuracy (ACC %) and the attack success rate
(ASR %) on CIFAR-10 for different trigger sizes of BadNets. Our
ASD can work well under different trigger sizes of BadNets.

Trigger size 1x1 2x2 3x3 4x4
No ACC 94.7 94.9 94.2 93.7
Defense ASR 93.4 100 99.7 99.8
ASD ACC 93.2 934 92.7 93.1
(Ours) ASR 0.8 1.2 22 1.4

100

—
o
S

—— ACC BadNets
—— ACC Blend
ACC WaNet

—— ACC BadNets
—— ACC Blend
ACC WaNet

©
1=}
©
S

§ —— AccCLB § —— AccCLB
o« ——~- ASR BadNets s ——~- ASR BadNets
@) 0{-—- ASRBlend 0 ol === AsRBlend
< ASR WaNet < ASR WaNet]
=~ ——- ASRCLB = ——- ASRCLB H
£ a0 R 0 |
L | !
g g :
< 204 \ < 20 Y
L Incangtiy fomzl NN
N A O TS s RN R AT
07_:-\-\ ______ N ARSI . Brg, = ST RN T (xS \'_’\—__‘
1 20 40 60 80 100 120 1 20 40 60 80 100 120
Epoch Epoch

(@ (b)

Figure 4. Ablation study for the loss-guided split of our ASD on
CIFAR-10 for four backdoor attacks, i.e., BadNets, Blend, WaNet,
and CLB. (a) Set class-agnostic loss-guided split in stage 1 instead
of class-aware one. (b) Set class-aware loss-guided split in stage
2 instead of class-agnostic one. The results show the necessity of
using class-aware one in stage 1 and using class-agnostic one in
stage 2.

poisoned rates € {1%, 5%, 10%, 15%, 20%}. We demon-
strate the results in Table 8, which verifies the superior-
ity of the proposed ASD. Besides, as suggested in [38],
we also perform the CLB attack under the poisoned rate
€ {0.6%,2.5%,5%} and the maximum perturbation mag-
nitude € € {16, 32} to evaluate ASD. The results are shown
in Table 9, which proves that our ASD can also defend the
CLB attack under different attack settings.

Different trigger patterns. For simplicity, we adopt the
BadNets on CIFAR-10 as an example to test the perfor-
mance of our ASD under different trigger patterns. On the
one hand, we set the trigger at different locations, as shown
in Table 10. On the other hand, we also adjust the trigger
size to evaluate our defense, as shown in Table 11. ASD can
achieve 92+% ACC and 2—% ASR in both two cases.

I. Ablation study on defense settings

Different modes in loss-guided split. In summary, loss-
guided split contains two modes during the previous two
stages: (1) Class-aware data split. (2) Class-agnostic data
split. In particular, we will discuss the necessity of the cor-
responding mode in different stages by conducting the fol-
lowed two experiments. Note that we only change the mode
of loss-guided data split and will not change the number in
D¢ of data split during every epoch.

Set class-agnostic loss-guided split in stage 1 instead of
class-aware one. As shown in Fig. 4a, if we use samples
with the lowest losses of the entire set to increase the seed
sample, the ACC will crash in stage 1 due to class imbal-
ance.

Set class-aware loss-guided split in stage 2 instead of
class-agnostic one. More poisoned samples in the target
class will be filled in D¢ with class-aware split in stage 2
and ASR can not be suppressed. Fig. 4b demonstrates that
BadNets will break the defense in this setting at 20% poi-
soned rate. In contrast, our defaulted ASD can still work at
20% poisoned rate, as shown in Table 8.

Different hyper-parameters in meta-split. The epoch,
learning rate and updated layer number are three key hyper-
parameters in meta-split.

From Fig. 5a, ACC will drop with the increase of the
epoch because the multi-epoch update can enable the model
to learn not only the poisoned samples but also the clean
hard samples well. As such, the large loss reduction makes
the clean hard samples hard to appear in D¢ based on the
proposed meta-split.

As for the learning rate in Fig. 5b, we can observe that
ACC will decrease as the learning rate is smaller. We sus-
pect that the reason may be that the low learning rate can
also prevent clean easy samples to be learned by the model.
Hence, the small loss reduction makes Do contain more
clean easy samples.

Fig. 5c indicates that the number of layers to be updated
in meta-split can also have an effect on the final perfor-
mance of the proposed ASD. We show the results of our
ASD at poisoned rate 1% in Fig. 5c. If we update fewer
layers in the meta-split, the clean easy samples can not be
learned by the model either, which introduces more clean
easy samples to D¢ and thus leads to a lower ACC. Once
all the layers are updated and the poisoned rate is low, the
difference in the loss reduction will decrease between the
poisoned samples and clean samples. Hence, D¢ can con-
tain more poisoned samples and induce the model to create
the backdoor mapping.

Different splitting rates a% in stage 2 and v% stage 3.
We keep the same splitting rate in stage 2 and stage 3 to
conduct the experiment. Fig. 6 shows that our ASD can
achieve 90+% ACC and 5—% ASR in different splitting
rates during stage 2 and stage 3. In other words, ASD is not
sensitive to the hyper-parameter splitting rate.

Different model architectures under our ASD. We test
our ASD under ResNet-18 [20], VGG-11 [35], MobileNet
[21] and DenseNet-121 [22]. As suggested in [4 1], we con-
duct the backdoor attacks without backdoor defenses. Be-
sides, we set the learning rate as 0.01 in meta-split for our
ASD when using MobileNet. Unless otherwise specified,
other settings remain unchanged. As shown in Table 12,
our ASD can defend against backdoor attacks under differ-

Table 12. The clean accuracy (ACC %) and the attack success
rate (ASR %) on CIFAR-10 for different model architectures. Our
ASD can work well under different model architectures.

ResNetl8 VGGI1 MobileNet DenseNetl21

Attack Method - =3 eRp"AGC ASR ACC ASR ACC ASR

No Defense 94.9 100 91.0 99.9 90.1 100 94.4 100

BadNets \spOurs) 934 12 904 37 894 46 93.1 22

No Defense 94.1 98.3 90.6 98.4 87.7 99.7 94.1 98.2

Blend ASD(Ours) 93.7 1.6 875 24 898 0.7 924 3.1
WaNet No Defense 93.6 99.9 89.7 99.4 86.9 99.8 93.9 100

ASD(Ours) 93.1 1.7 903 09 86.8 34 932 3.2
CLB No Defense 94.4 99.9 91.0 99.9 889 7.2 942 23

ASD(Ours) 93.1 09 89.2 3.1 88.1 24 931 14

Table 13. The clean accuracy (ACC %) and the attack success rate
(ASR %) on CIFAR-10 for different randomly sampled seed sam-
ples. The experiments (+£std over 5 random runs) are conducted
on CIFAR-10. Our ASD can achieve the stable performance when
the seed samples are differently sampled.

BadNets Blend ‘WaNet CLB
ACC 925(%0.7) 929 (£0.6) 93.2(£0.6) 93.0 (£0.5)
ASR 1.9 (£0.6) 1.5 (£0.5) 2.0 (£0.7) 2.2 (£0.8)

Table 14. The clean accuracy (ACC %) and the attack success rate
(ASR %) on CIFAR-10 for different numbers of seed samples. The
default value (i.e., 100) used in our ASD is feasible on CIFAR-10.

Number of seed samples 10 50 100
ACC 80.6 914 93.4

BadNets ASR 0 48 12
Blond ACC 925 86.8 937

ASR 99.1 104 6
ACC 85.9 927 93.1

WaNet ASR 99.7 62 17
ACC 93.0 93.0 93.1

CLB ASR 36 24 0.9

ent model architectures.

Ablation study about seed samples. Seed samples in each
dataset are randomly sampled and then fixed during ASD.
Here, we report the results (mean+-std) of 5 runs in Table
13. The results demonstrate the stability of our ASD under
different sampled seed samples. Besides, we also conduct
the experiments under different numbers of seed samples.
As shown in Table 14, it might result in the failure of ASD
when the number of seed samples is less than 100. Note
that 100 is much smaller than that (10,000) required in pre-
vious defenses [27,28,39,42]. Besides, we also show seed
samples can be taken from a different available dataset in
Sec. 5.4, which indicates the flexibility of our seed sample
selection.

Performance on clean dataset. Our ASD can achieve
93.8% ACC on clean CIFARI1O0, preserving the clean ACC
well.

J. Details about different semi-supervised
methods

Semi-supervised learning [7,8,36,43,45] studies how to

leverage a training dataset with both labeled data and un-
labeled data to obtain a model with high accuracy. In ad-
dition to its application in normal training, semi-supervised
learning also serves as a powerful means for the security of
DNNs [1, 11,23].
MixMatch Loss [8]. Given a batch X C D¢ of labeled
samples, and a batch &/ C Dp of unlabeled samples, Mix-
Match generates a guessed label distribution ¢ for each un-
labeled sample u € U and adopts MixUp to augment X’ and
U to X' and U’. The supervised loss Ly is defined as:

Lo=) H(psq), (1)

(z,q)eX’

where p, is the prediction of x, ¢ is the one-hot label and
H(-,-) is the cross-entropy loss. The unsupervised loss £,
is defined as:

Lo= Y lpu—dls. @)

(w,q)eUt’

where p,, is the prediction of u.
Finally, the MixMatch loss can be defined as:

L=Ls+ N Ly, 3)

where) is a hyper-parameter for trade-off.

UDA [43]. Given a batch X C D¢ of labeled samples, and
a batch Y C Dp of unlabeled samples, UDA constructed
a guessed label distribution ¢ for each unlabeled sample
u € U after the weak augmentation. Moreover, it adopts
the strong augmentation (RandAugment) to augment U to
U’ and generates a guessed label distribution ¢q’. The super-
vised loss L is defined as:

Lo= Y H(psq),)
(xz,q)eX

where H(-,-) is the cross-entropy loss. The unsupervised
loss L, is defined as:

L= Y

(u,q) €U, (u,q")€U’

H(Gq), 5)

where p,, is the prediction of .
Finally, the UDA loss can be defined as:

L=Ls+ N\ Ly, (6)

where A is a hyper-parameter for trade-off.

ReMixMatch Loss [7]. Given a batch X C D¢ of la-
beled samples, and a batch &/ C Dp of unlabeled sam-
ples, ReMixMatch produces a guessed label distribution ¢

60 60
94 {7 . o & 100 60
94
% '\\ 00 o 50 " %t Lso
90 40 90 L 40 2
—_ -~ ACC BadNets —_— -6~ ACC BadNets — e~ ACC BadNets = - ACC BadnNet: 4o
R g8 = AcCBlend X -8 ACCBlend X | & ACCBlend 60 R 9 - Acmlend S
~ ACC Waet 30 88 ACCWaNet | 30~ ACC WaNet pot < ACC WaNet <
8 g6 | & Accas g 8 -~ ACCCLB % - ACCCLB 5) O 0L e [30a
I -0~ ASR BadNets < < 86 -0~ ASR BadNets < 1 -0~ ASR BadNets 40 < %() -0~ ASR BadNets 2
4| = ASRBlend 20 -~ ASRBlend |20 -3 ASR Blend o ASR Blend F20
8 ASR WaNet 84 ASR WaNet ASR WaNet 88 ASR Waet
-~ ASRCLB - ASRCLB 1 #- ASRCLB A2 -»- ASRCLB
82 10 . W10 L L1
sz By toes = e 861g
80{guesasl o go LE=="T0= gea=zifocoo8| Rsm--@p=s=zfzzss alg W necgeccagp sy
1 2 3 4 5 0.005 0.01 0;015 0.02 0.025 1 2 3 4 5 30 40 50 60 70
Epoch Learning Rate Updated Layer Number Splitting Rate (%)

(2) (b)

Figure 5. Ablation study for the meta-split on CIFAR-10 for four backdoor attacks, i.e., BadNets,
Blend, WaNet, and CLB. (a) The epoch of supervised learning. (b) Learning rate. (c) Updated

layer number.

for each unlabeled sample v € U after the weak augmen-
tation. Besides, it adopts MixUp, the strong augmentation
(CTAugment) and the weak augmentation to augment X,
U, Uto X', U, U,. In total, the ReMixMatch loss can be
defined as:

L= Z H (pz, q) + Au Z H (pu, 7)

(z,q)ex’ (v, @)U’

+/\z;[1 Z H (pu1 s (j) (7

(u1,9) €U

+Ar Z H (pe (r | Rotate(uy,r)),r),

u1€l;{1

where Rotate(u1,) denotes that rotate an image u; € U
the rotation angle r uniformly from » ~ {0, 90, 180,270}
and H(-, -) is the cross-entropy loss.

K. Details of the adaptive attack

We state the details of the adaptive attack in the main
paper.
Problem formulation. Suppose that the attackers choose
a number of samples to be poisoned D, = {(x;,v:)}¥,
and D. = {(x;,y;)}M, denotes the remain clean samples,
feo denotes a trained model. The objective function for the
trigger pattern p in the adaptive attacks can be formulated as
(8), i.e., minimizing the gradient for the poisoned samples
w.r.t the trained model fg and maximizing that for the clean
samples.

.1 dL (fe(x +p),y)
mny D) a0
(m!y)EDP

1 dL (fe(x),
SENLS (gé)y)

€)
i) o<
(may)eDc

where € is the magnitude of the trigger pattern.
Settings and more results. We adjust the perturbation
magnitudes € of the trigger pattern for ABL, DBD and our

c)

(Figure 6. Ablation study for
the splitting rate in Stage 2 and
Stage 3 on CIFAR-10 for four
backdoor attacks.

Table 15. The results of ABL, DBD and our ASD under the adap-
tive attack in different perturbation magnitudes e of the trigger.

€ 4 8 16 32 Average

ABL 86.1/0.8 71.6/99.7 75.1/99.8 86.7/99.4 | 79.9/74.9
DBD 90.4/0.2 91.2/0.7 904/08 91.7/99.9 | 90.9/25.4
ASD (Ours) | 93.2/1.1 93.5/1.3 92.8/0.9 933/12 93.2/1.1

ASD. As shown in Table 15, our ASD can achieve the best
average results among three backdoor defenses. Besides,
we also study the effect of the loss objectives to train the
surrogate model on the results. Specially, our ASD can ob-
tain 91+% ACC and 5—% ASR by using either the super-
vised loss or the semi-supervised loss to train the surrogate
model in the adaptive attack.

Reasons for our successful defense against the adaptive
attack. The superiority of ASD in adaptive attack bene-
fits a lot from the semi-supervised loss objective and two
dynamic data pools. Adaptive attacks aim at optimizing
triggers to minimize the gaps between clean and poisoned
samples on surrogate models, which makes poisoned sam-
ples difficult to defend. However, such reduced gaps are
highly dependent on model checkpoint, which means the
gaps might be large on some other checkpoints, especially
during ASD training with semi-supervised loss on two dy-
namic data pools (D¢, Dp), which can greatly increase the
diversity of optimized checkpoints. Besides, as shown in
manuscript, ASD is good at separating model checkpoint-
dependent clean hard examples from poisoned ones with
meta-split. Moreover, the strong data augmentation and
pseudo-labeling of MixMatch used in ASD also help de-
stroy the trigger pattern.

L. Resistance to another adaptive attack

In this section, we propose another adaptive attack for
our proposed ASD. We adopt the same poisoning-based
threat model [13, 19,38] as that in the main paper.
Problem formulation. Suppose that the attackers choose
a number of samples to be poisoned D, = {(z,y:)}Y,

and D; = {(z;,y:)}M, denotes the remaining clean sam-
ples with the attacker-specified target label y;, g denotes
a trained model. Since we adopt semi-supervised learning
to purify the polluted pool and this adaptive attack aims to
destruct the purification process, the trigger pattern p can
be optimized by minimizing the distance between poisoned
samples and the target class in the feature space as:

% > g(ftﬂ))-% > gl

(z,y)EDy (z,y)€D:

sty || P lloo< €,

min
P

)

> 9

where ¢ is the magnitude of the trigger pattern.

Settings and results. We adopt the same settings as that
in our main paper. The adaptive attack can achieve 94.9%
ACC and 99.9% ASR without any defense. This attack can
obtain 93.7% ACC and only 1.5% ASR under our ASD.
Hence, our ASD can still work well under this adaptive at-
tack due to the low transferability of the trigger pattern.

M. Details about the loss distribution during
meta-split

We show more results of the loss distribution during the
meta-split of our proposed ASD in Fig. 7, Fig. 8, Fig. 9 and
Fig. 10.

N. Details about the grid-search for FP, NAD,
ABL, and DPSGD

We search for the best results by grid search for FP,
NAD, ABL and DPSGD and show the results in Table 16,
Table 17, Table 18, Table 19, Table 20, Table 21, Table 22,
Table 23, Table 24, Table 25, Table 26, Table 27, Table 28.
The details of the grid search have been stated in Appendix
B.

124
Clean samples Clean samples 124 Clean samples Clean samples
8- Poisoned samples 8- Poisoned samples Poisoned samples 104 Poisoned samples
101
c 9 c 9] c 8 c
o o o o
£ £ T 6] T 6]
O 4 O 4 o o
aQ [oX o3 aQ
o 3 o] o 4
o o o o
2 2
24 21
0 - - - - - 0l - - - - - 0~ - - - - - 0= - - - - -
2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Loss Value Loss Value Loss Value Loss Value
(a) BadNets (b) Blend (c) WaNet (d) CLB

Figure 7. The loss distribution of samples on the model fg after the first two stages on CIFAR-10 for four backdoor attacks.

601
354 Clean samples 404 Clean samples Clean samples Clean samples
Poisoned samples 35 Poisoned samples 404 Poisoned samples 0 Poisoned samples

301 1
S = 301 S S
S 3 3 S
< 25 < < 304 < 404
c 5 c 25 5 c 5 c 5
=l 201 44 k=l 44 p= 44 o 44
=) Fe i =] 5 30
- £ 20 s e
2151] 2 Y 8201 N 8 y
) 29 O 15 29 o 21 o 5, | 29
= =g = = 20
& 104 1 o 14 o 14 a 1

ot : 101 04 . 104 o4 . 10 0 ,
0 1 1 0 1 1 1
51 / 5
0 - - - - - 0 - - - - - 04— - - - - - 0l - - - - -
2 4 6 8 10 0 2 4 [3 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Loss Value Loss Value Loss Value Loss Value
(a) BadNets (b) Blend (c) WaNet (d) CLB

Figure 8. The loss distribution of samples on the ‘virtual model’ fq/
backdoor attacks.

in Fig. 7 after one-epoch supervised learning on CIFAR-10 for four

84 101
101
Clean samples 81 Clean samples Clean samples Clean samples
71 Poisoned samples 7] Poisoned samples Poisoned samples 8 Poisoned samples
gl]
—~ 61 —_ —_ —_
x X 61 x X
<. < = =
c c 54 c 6 c 6
S s’ s ° S
£ 4 £ 4] i< £
o o o o
Q3] [oX Q 44 Q 44
o O 3 o o
o =g =g o
o o o o
24 2
21 21
14 1]
0 - - - - - - - - ok - - - - 0l— - - - -
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
Loss Reduction Loss Reduction Loss Reduction Loss Reduction
(a) BadNets (b) Blend (c) WaNet (d) CLB
Figure 9. The loss reduction between fg in Fig. 7 and fg/ in Fig. 8 on CIFAR-10 for four backdoor attacks.
84 Clean samples 81 Clean samples 124 Clean samples 12 Clean samples
7] Poisoned samples ; Poisoned samples Poisoned samples Poisoned samples
] 104
3 3 3 3 101
g Lo g g
3 1
5% 5% s s°
£ 4 £, £ 6 £
4 c4 5 6 S 61
aQ a Q aQ
O 3 O 3 o o
2 4 2 44 S
o a a a 4
21 2
2]
1q 14 2
01— - - - - - 0+ - - - - . 0~ - - - - - 0+ - - - - -
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Loss Value Loss Value Loss Value Loss Value
(a) BadNets (b) Blend (c) WaNet (d) CLB

Figure 10. The loss distribution of samples on the model fo after all three stages on CIFAR-10 for four backdoor attacks.

Table 16. Search for the best results by the grid-search for FP on CIFAR-10.

Ratio BadNets Blend WaNet IAB Refool CLB
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0.2 94.5 100 93.9 97.9 93.4 100 94.1 99.9 93.9 91.8 90.2 92.8
0.3 94.4 100 93.8 97.2 93.9 99.9 93.9 99.9 93.9 91.9 90.4 94.4
0.4 94.5 100 93.8 96.1 93.6 99.8 93.9 99.6 93.6 92.3 90.3 96.9
0.5 94.6 100 93.7 96.2 93.7 99.7 93.9 100 93.2 92.5 90.4 98.8
0.6 94.4 100 93.6 96.9 93.7 99.9 93.3 99.9 923 92.1 94.9 99.9
0.7 94.2 100 934 93.2 93.3 99.8 92.9 99.8 91.2 91.8 94.4 99.8
0.8 93.9 1.8 93.8 89.5 93.1 99.8 923 99.7 92.7 87.9 93.3 100
0.9 94.2 100 92.9 771 90.4 98.6 89.3 98.1 92.1 86.1 91.17 99.9
Table 17. Search for the best results by the grid-search for FP on GTSRB.
Ratio BadNets Blend WaNet IAB Refool CLB
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0.2 974 100 96.8 98.7 97.6 100 97.6 100 97.9 98.2 94.5 99.7
0.3 97.2 100 96.7 98.6 97.2 100 97.3 100 98.1 96.4 93.6 99.3
0.4 97.3 100 96.7 98.5 97.2 100 91.7 100 97.9 94.2 89.3 99.4
0.5 97.1 100 96.5 98.2 97.4 100 97.5 100 97.3 60.9 83.2 99.5
0.6 97.1 100 96.5 98.1 97.2 99.9 97.5 100 96.6 49.1 67.6 99.7
0.7 96.5 99.9 96.1 85.2 96.3 99.9 97.4 99.5 95.7 47.3 52.6 99.2
0.8 93.4 73.7 91.4 68.1 92.5 214 96.4 99.2 91.5 0.2 39.4 99.6
0.9 84.2 0 78.8 85.7 85.3 23.6 86.9 0 87.3 04 23.6 99.4
Table 18. Search for the best results by the grid-search for FP on ImageNet.
Ratio BadNets Blend WaNet IAB Refool CLB
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0.2 76.7 51.1 78.1 93.9 79.1 95.9 78.9 99.4 71.7 84.4 79.9 88.3
0.3 75.9 46.1 71.6 93.4 78.9 96.3 78.3 99.9 76.7 74.1 79.1 69.2
0.4 73.9 20.7 76.1 90.9 71.5 95.5 76.9 98.9 759 75.5 71.6 60.1
0.5 70.3 1.6 74.4 86.2 74.2 94.4 76.3 99.9 73.8 62.7 75.7 67.2
0.6 73.1 14.9 72.7 85.9 72.5 95.2 72.8 98.2 70.5 48.3 73.2 38.3
0.7 70.1 0.3 71.1 87.8 75.1 95.1 73.9 99.9 73.6 63.8 69.8 49.5
0.8 66.4 0 72.9 7179 71.4 922 70.9 99.4 712 52.5 70.9 53.7
0.9 84.3 0 63.4 9.5 58.2 844 58.7 84.2 61.4 10.3 54.2 0
Table 19. Search for the best results by the grid-search for FP on VGGFace2.
Ratio BadNets Blend WaNet IAB Refool CLB
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0.2 91.2 100 90.2 99.9 91.8 75.3 90.7 97.5 90.7 98.6 90.8 99.8
0.3 91.1 100 90.1 99.9 91.8 75.7 90.8 97.4 90.8 98.7 90.9 99.9
0.4 91.1 100 90.2 99.9 91.7 75.8 90.7 97.3 90.7 98.6 90.8 99.9
0.5 91.5 100 90.2 99.9 91.6 76.7 90.6 97.3 90.9 98.7 90.8 99.8
0.6 91.0 100 91.1 99.9 91.6 78.5 90.6 97.2 90.4 98.4 90.6 99.9
0.7 91.1 100 90.3 100 91.4 81.1 90.5 97.6 90.7 98.9 90.7 99.9
0.8 91.5 100 89.9 100 90.8 79.6 90.6 974 90.2 97.9 90.2 100
0.9 89.3 100 87.1 96.0 89.2 334 89.3 98.4 86.8 98.5 88.8 99.9
Table 20. Search for the best results by the grid-search for NAD on CIFAR-10.
BadNets Blend WaNet IAB Refool CLB
A ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
500 90.6 12.9 89.8 17.2 89.2 21.8 88.5 29.7 89.9 9.7 86.4 9.5
1000 89.7 10.0 87.4 43 87.5 11.8 85.8 8.3 89.7 10.5 81.8 8.6
1500 88.2 4.6 85.8 34 83.1 13.1 82.8 4.2 87.7 54 72.5 6.2
2000 84.7 6.9 80.2 59 71.3 6.7 75.5 2.5 86.2 3.6 65.3 6.3
2500 83.1 4.5 75.8 4.5 64.3 8.1 67.9 1.1 81.1 3.1 43.9 10.9
5000 322 2.7 32.1 3.7 40.2 6.3 39.4 7.2 45.5 2.8 323 5.1
7500 18.2 5.1 29.8 3.1 25.7 4.1 245 1.9 30.3 8.1 18.4 11.1
10000 20.8 1.1 20.2 7.4 23.9 10.4 20.1 6.1 24.1 6.2 21.4 14.4

Table 21. Search for the best results by the grid-search for NAD on GTSRB.

BadNets Blend WaNet IAB Refool CLB
A ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
500 97.1 0.2 96.9 99.9 97.2 67.8 96.9 0.1 97.3 93.6 5.7 40.1
1000 96.8 0 96.8 99.5 97.1 69.1 97.1 0.1 97.3 72.4 4.1 41.7
1500 96.5 0 96.3 99.9 96.9 76.1 95.9 0.7 97.1 475 4.7 44.6
2000 93.5 0 96.2 99.3 96.7 70.9 94.5 0.5 95.5 1.4 4.8 40.1
2500 19.7 0 96.2 99.1 96.5 47.1 20.8 0 93.6 3.8 5.5 36.3
5000 6.9 0 93.3 62.4 78.1 2.4 59 0 7.1 0 33 211
7500 5.7 1.2 55.7 1.2 4.3 0 8.4 0.5 43 0 4.6 343
10000 59 0.7 10.3 0 5.8 31.7 72 1.4 6.6 0 2.9 29.4
Table 22. Search for the best results by the grid-search for NAD on ImageNet.
BadNets Blend WaNet IAB Refool CLB
A ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
500 64.1 6.22 64.8 0.3 63.8 1.3 63.1 4.8 63.7 0.3 63.4 33
1000 65.1 5.1 63.6 0.6 62.8 0.7 63.4 1.1 62.5 0 62.2 1.9
1500 61.6 4.2 62.27 0.5 62.2 0.8 63.8 0.6 60.8 0 61.8 4.6
2000 60.1 2.1 59.6 0.4 59.7 1.2 60.6 0.3 59.5 0.3 62.7 1.7
2500 545 1.5 57.5 0 56.4 0.5 57.9 0.2 58.5 0.1 532 1.3
5000 51.7 3.2 51.5 0.4 50.2 0.5 48.5 0.6 51.5 0 47.1 0.6
7500 43.8 1.8 44.7 0 38.2 0.6 43.4 0.4 414 0 40.9 0.2
10000 33.8 1.4 33.9 0.6 41.1 1.2 354 0.6 35.2 0.1 37.1 0
Table 23. Search for the best results by the grid-search for NAD on VGGFace2.
BadNets Blend WaNet IAB Refool CLB
A ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
500 42.6 5.5 49.1 10.9 48.7 3.7 43.1 5.5 50.8 43 429 15.1
1000 53.4 10.6 46.2 8.1 439 12.2 25.7 5.1 52.9 2.1 46.3 18.4
1500 48.5 5.8 43.7 5.6 50.4 4.2 37.9 2.3 53.0 31 48.7 15.6
2000 56.1 6.5 47.3 4.1 43.7 4.1 44.7 8.8 52.8 5.6 34.6 3.0
2500 41.8 1.4 50.8 7.3 43.9 3.7 42.7 8.9 533 7.1 40.0 3.3
5000 53.8 11.4 28.9 2.6 41.1 22 31.9 5.3 52.5 4.3 40.2 11.2
7500 50.7 2.7 479 2.5 49.5 2.8 32.6 40.9 532 53 38.7 22
10000 52.7 8.5 45.5 6.4 40.7 5.5 30.6 12.3 50.5 5.1 27.2 139
Table 24. Search for the best results by the grid-search for ABL on CIFAR-10.
BadNets Blend ‘WaNet IAB Refool CLB
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0 93.8 1.1 90.9 2.1 84.1 2.2 93.4 5.1 79.9 99.7 86.6 1.3
0.1 66.2 100 91.9 1.6 75.7 100 88.2 100 82.7 1.3 79.9 14.4
0.2 70.8 100 81.3 99.3 80.1 100 85.7 100 80.3 99.1 83.8 7.67
0.3 72.8 100 80.1 99.3 71.7 100 80.6 100 69.7 99.9 83.8 25.6
0.4 64.9 100 86.8 99.2 78.6 100 73.8 100 79.5 99.9 78.3 22.6
0.5 71.9 100 74.5 99.9 715 100 76.9 100 71.9 99.9 719 12.5
Table 25. Search for the best results by the grid-search for ABL on GTSRB.
BadNets Blend WaNet IAB Refool CLB
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0 97.1 0 95.6 12.5 94.2 10.9 93.3 100 95.4 0 90.4 2.3
0.1 80.9 100 94.2 99.9 91.8 100 914 100 96.2 0 86.7 100
0.2 85.5 100 94.4 99.9 91.9 100 90.9 100 95.7 0 80.1 100
0.3 97.1 0 97.1 0.5 97.0 0.4 97.1 0.8 96.2 0 75.2 100
0.4 96.8 0 96.9 0.7 96.7 0 97.4 0.6 95.5 0 72.3 100
0.5 97.1 0 96.7 2.1 96.1 0.2 96.9 2.1 95.6 0 69.1 100

Table 26. Search for the best results by the grid-search for ABL on ImageNet.

BadNets Blend ‘WaNet IAB Refool CLB
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0 80.2 0.1 83.6 100 84.8 99.8 79.7 3.9 76.2 0.2 82.8 0.8
0.1 82.9 0 83.4 100 82.5 100 81.8 1.1 78.5 0.3 82.7 64.3
0.2 734 100 82.1 100 81.5 99.9 82.6 99.9 79.4 0.5 82.8 56.2
0.3 82.8 0 75.9 1.0 69.2 2.3 80.6 0 80.1 1.6 80.6 60.1
0.4 83.1 0 78.6 1.1 74.9 1.1 81.7 0.1 80.1 2.6 82.3 52.5
0.5 83.1 0.1 82.6 0.7 714 2.5 81.7 0 80.4 2.7 80.2 594
Table 27. Search for the best results by the grid-search for ABL on VGGFace2.
BadNets Blend WaNet IAB Refool CLB
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0 90.9 65.2 90.1 96.7 90.3 89.7 91.2 99.3 90.9 56.1 914 0.3
0.1 90.4 99.9 90.6 97.6 91.8 100 91.2 79.1 91.1 51.1 90.6 0.3
0.2 91.2 19.6 90.2 100 92.6 74.6 91.3 59.7 91.3 51.7 90.9 0.1
0.3 90.8 854 91.1 99.9 91.9 99.8 92.0 80.1 91.6 62.8 91.2 0.1
0.4 90.5 100 90.3 99.9 91.5 81.4 92.8 100 90.0 58.8 90.8 0
0.5 90.2 100 90.8 100 91.3 81.1 91.2 100 90.2 61.2 91.3 0
Table 28. Search for the best results by the grid-search for DPSGD on CIFAR-10.
BadNets Blend WaNet IAB Refool CLB
i ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0 10.1 100 10.9 100 10.2 100 10.1 100 10.9 100 10.1 0
0.01 85.5 100 84.4 87.2 84.3 99.9 85.9 99.7 83.2 91.7 84.6 38.2
0.05 79.2 99.8 68.5 63.1 76.4 94.5 71.7 99.8 76.8 82.7 76.7 10.3
0.1 67.2 100 64.3 75.2 63.5 75.4 65.3 99.8 65.4 70.2 65.1 8.2
0.2 55.9 10.9 56.7 37.0 55.1 15.8 54.4 99.8 554 59.2 55.7 7.6

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(7]

Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Al-
hussein Fawzi, Robert Stanforth, and Pushmeet Kohli. Are
labels required for improving adversarial robustness? In
NeurlPS, 2019. 7

Jiawang Bai, Bin Chen, Yiming Li, Dongxian Wu, Weiwei
Guo, Shu-tao Xia, and En-hui Yang. Targeted attack for deep
hashing based retrieval. In ECCV, 2020. 2

Jiawang Bai, Li Yuan, Shu-Tao Xia, Shuicheng Yan, Zhifeng
Li, and Wei Liu. Improving vision transformers by revisiting
high-frequency components. In ECCV, 2022. 2

Yang Bai, Yan Feng, Yisen Wang, Tao Dai, Shu-Tao Xia, and
Yong Jiang. Hilbert-based generative defense for adversarial
examples. In ICCV, 2019. 2

Yang Bai, Yuyuan Zeng, Yong Jiang, Yisen Wang, Shu-Tao
Xia, and Weiwei Guo. Improving query efficiency of black-
box adversarial attack. In ECCV, 2020. 2

Yang Bai, Yuyuan Zeng, Yong Jiang, Shu-Tao Xia, Xingjun
Ma, and Yisen Wang. Improving adversarial robustness via
channel-wise activation suppressing. In /ICLR, 2021. 2
David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Ku-
rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-
match: Semi-supervised learning with distribution alignment
and augmentation anchoring. In /CLR, 2020. 7

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In NeurIPS,
2019. 2,3,7

Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin Ghi-
asi, Jonas Geiping, Micah Goldblum, Tom Goldstein, and
Arjun Gupta. Strong data augmentation sanitizes poison-
ing and backdoor attacks without an accuracy tradeoff. In
ICASSP, 2021. 4

Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and An-
drew Zisserman. Vggface2: A dataset for recognising faces
across pose and age. In FG. IEEE, 2018. 1, 3

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C
Duchi, and Percy S Liang. Unlabeled data improves adver-
sarial robustness. In NeurIPS, 2019. 7

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In /ICML, 2020. 2

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn
Song. Targeted backdoor attacks on deep learning systems
using data poisoning. 2017. 1, 8

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 1

Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly detec-
tion and backdoor attack detection via differential privacy. In
ICLR, 2020. 4

Mark Everingham and John Winn. The pascal visual object
classes challenge 2012 (voc2012) development kit. Pattern
Anal. Stat. Model. Comput. Learn., Tech. Rep, 2007:1-45,
2012. 1

Jindong Gu, Volker Tresp, and Yao Qin. Are vision trans-
formers robust to patch perturbations? In ECCV, 2022. 2

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]
(33]

(34]

(35]

Jindong Gu, Baoyuan Wu, and Volker Tresp. Effective and
efficient vote attack on capsule networks. In /CLR, 2021. 2
Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain. In IEEE Access, 2019. 1, 8

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1,6

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. In
CVPR, 2017. 6

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In CVPR, 2017. 1, 3,6

Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui
Ren. Backdoor defense via decoupling the training process.
InICLR, 2022. 1,2,3,7

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran
He, and Siwei Lyu. Invisible backdoor attack with sample-
specific triggers. In ICCV, 2021. 3

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Anti-backdoor learning: Training clean
models on poisoned data. In NeurIPS, 2021. 1,2

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Neural attention distillation: Erasing back-
door triggers from deep neural networks. In /CLR, 2021. 1,
2,7

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-
pruning: Defending against backdooring attacks on deep
neural networks. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 273-294. Springer,
2018. 2,7

Xinwei Liu, Jian Liu, Yang Bai, Jindong Gu, Tao Chen, Xi-
aojun Jia, and Xiaochun Cao. Watermark vaccine: Adversar-
ial attacks to prevent watermark removal. In ECCV, 2022. 2
Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Re-
flection backdoor: A natural backdoor attack on deep neural
networks. In ECCV, 2020. 1

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In /CLR, 2018. 2
Anh Nguyen and Anh Tran. Wanet—imperceptible warping-
based backdoor attack. In ICLR, 2021. 1

Tuan Anh Nguyen and Anh Tran. Input-aware dynamic
backdoor attack. In NeurIPS, 2020. 1, 4

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurlIPS, 2019. 1

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In /CLR,
2015. 6

(36]

(37]

(38]

(39]

(40]

(41]

(42]

[43]

[44]

[45]

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence.
In NeurIPS, 2020. 7

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
Christian Igel. The german traffic sign recognition bench-
mark: a multi-class classification competition. In IJCNN,
2011. 1

Alexander Turner, Dimitris Tsipras, and Aleksander Madry.
Clean-label backdoor attacks. 2018. 2, 6, 8

Haotao Wang, Junyuan Hong, Aston Zhang, Jiayu Zhou, and
Zhangyang Wang. Trap and replace: Defending backdoor
attacks by trapping them into an easy-to-replace subnetwork.
In NeurIPS, 2022. 7

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng
Yi, and James Bailey. Symmetric cross entropy for robust
learning with noisy labels. In ICCV, 2019. 3

Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu,
Shaokui Wei, Danni Yuan, Chao Shen, and Hongyuan Zha.
Backdoorbench: A comprehensive benchmark of backdoor
learning. In NeurlPS, 2022. 6

Dongxian Wu and Yisen Wang. Adversarial neuron pruning
purifies backdoored deep models. In NeurIPS, 2021. 4,7
Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and
Quoc Le. Unsupervised data augmentation for consistency
training. In NeurIPS, 2020. 7

Tong Zhang. Solving large scale linear prediction problems
using stochastic gradient descent algorithms. In /ICML, 2004.
1

Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-
supervised learning. Synthesis lectures on artificial intelli-
gence and machine learning, 3(1):1-130, 2009. 7

	. Algorithm outline
	. Implementation details
	. Datasets and DNN models
	. Attack setups
	. Defense setups

	. Results on VGGFace2 dataset
	. Results about more backdoor attacks
	. Results about more backdoor defenses
	. Combination between DBD and our meta-split
	. Comparison between DBD and our ASD
	. Ablation study on attack settings
	. Ablation study on defense settings
	. Details about different semi-supervised methods
	. Details of the adaptive attack
	. Resistance to another adaptive attack
	. Details about the loss distribution during meta-split
	. Details about the grid-search for FP, NAD, ABL, and DPSGD

