
Appendix: Backdoor Defense via Adaptively Splitting Poisoned Dataset

Kuofeng Gao1*, Yang Bai 2*, Jindong Gu3†, Yong Yang4, Shu-Tao Xia15†

1 Tsinghua University 2 Tencent Security Zhuque Lab 3 University of Oxford
4 Tencent Security Platform Department 5 Peng Cheng Laboratory
gkf21@mails.tsinghua.edu.cn, {mavisbai,coolcyang}@tencent.com

jindong.gu@eng.ox.ac.uk, xiast@sz.tsinghua.edu.cn

A. Algorithm outline
The algorithm outline of ASD is listed as Algorithm 1.

B. Implementation details
In summary, we use the framework PyTorch [34] to im-

plement all the experiments. Note that the experiments
on CIFAR-10 and GTSRB dataset are run on a NVIDIA
GeForce RTX 2080 Ti GPU with 11GB memory and the
experiments on ImageNet and VGGFace2 dataset are on a
NVIDIA Tesla V100 GPU with 32GB memory.

B.1. Datasets and DNN models

The details of datasets and DNN models in our experi-
ments are summarized in Table 1. Specially, we randomly
choose 30 classes from ImageNet and VGGFace2 dataset to
construct a subset due to the limitation of the computational
time and costs.

B.2. Attack setups

Training setups. On the CIFAR-10 [24] and GTSRB [37]
dataset, we perform backdoor attacks on ResNet-18 [20] for
200 epochs with batch size 128. We adopt the stochastic
gradient descent (SGD) [44] optimizer with a learning rate
0.1, momentum 0.9, weight decay 5 × 10−4. The learning
rate is divided by 10 at epoch 100 and 150. On the ImageNet
[14] dataset, we train ResNet-18 for 90 epochs with batch
size 256. We utilize the SGD optimizer with a learning rate
0.1, momentum 0.9, weight decay 10−4. The learning rate
is decreased by a factor of 10 at epoch 30 and 60. The image
resolution will be resized to 224× 224× 3 before attaching
the trigger pattern. On VGGFace2 [10] dataset, the batch
size is set to 32 and the targeted model is DenseNet-121
[22]. Other settings are the same as those used in training
the models on ImageNet dataset.
Settings for BadNets. As suggested in [19, 23], we set a
2 × 2 square on the upper left corner as the trigger pattern

*Equal contribution.
†Corresponding author.

Table 1. Summary of datasets and DNN models in our experi-
ments.

Dataset # Input size # Classes # Training # Testing Modelsimages images

CIFAR-10 3 × 32 × 32 10 50000 10000 ResNet-18

GTSRB 3 × 32 × 32 43 39209 12630 ResNet-18

ImageNet 3 × 224 × 224 30 38859 1500 ResNet-18

VGGFace2 3 × 224 × 224 30 9000 2100 DenseNet-121

on CIFAR-10 and GTSRB. For ImageNet and VGGFace2,
we use a 32×32 apple logo on the upper left corner. The ab-
lation study for different trigger sizes and trigger locations
has been shown in Appendix H.
Settings for Blend. Following [13, 23], we choose “Hello
Kitty” pattern on CIFAR-10 and GTSRB and the random
noise pattern on ImageNet and VGGFace2. The blend ratio
is set to 0.1.
Settings for WaNet. The original implementation of
WaNet [32] assumes that the attacker can control the train-
ing process. To apply WaNet in our poisoning-based at-
tack threat model, we follow [23] to directly use the default
warping-based operation to generate the trigger pattern. For
CIFAR-10 and GTSRB, we set the noise rate ρn = 0.2, con-
trol grid size k = 4, and warping strength s = 0.5. For Im-
ageNet and VGGFace2, we choose the noise rate ρn = 0.2,
control grid size k = 224, and warping strength s = 1.
Settings for IAB. IAB [33] also belongs to the control-
training backdoor attacks as WaNet [32]. As suggested
in [26], we first reimplement the IAB attack as the origi-
nal paper [33] to obtain the trigger generator. Then we use
the trigger generator to generate the poisoned samples in
advance and conduct a poisoning-based backdoor attack.
Settings for Refool. Following [27, 30], we randomly
choose 5,000 images from PascalVOC [16] as the candidate
reflection set Rcand and randomly choose one of the three
reflection methods to generate the trigger pattern during the

1

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Algorithm 1: ASD Backdoor Defense
Input : A model fθ with randomly initialized parameters

θ and a poisoned training dataset with C classes
D = {(xi, yi)}Ni=1. The clean dataset pool DC

with labels and the polluted dataset pool DP

without using labels. Stage 1, Stage 2 and Stage
3 will be ended at T1, T2 and T3. L1(·) and
L2(·) are chosen as SCE loss and CE loss.

Output: A clean model fθ without backdoor behavior.
1 # Initialization
2 Initialize θ randomly;
3 while T < T3 do
4 # Class-aware loss-guided split
5 if T < T1 then
6 DC ← clean seed samples;
7 for Class K = 0, . . . , C − 1 do
8 Calculate L1(fθ) for {(x, y)|y = K} in D;
9 Move T/t× n samples in Class K with lowest

L1(fθ) to DC ;
10 end
11 # Class-agnostic loss-guided split
12 else if T < T2 then
13 DC ← ∅;
14 Calculate L1(fθ) for the entire D;
15 Move α% samples with lowest L1(fθ) to DC ;
16 # Meta-split
17 else if T < T3 then
18 DC ← ∅;
19 θ′ ← θ;
20 θ′ ← θ′ − β∇θ′L2(fθ′(x), y);
21 Calculate L1(fθ) for the entire D;
22 Calculate L1(fθ′) for the entire D;
23 Move γ% samples with lowest L1(fθ)− L1(fθ′)

to DC ;
24 end
25 DP = {x|(x, y) ∈ D\DC};
26 Train the model fθ by semi-supervised learning with

the below objective function:

min
θ
L (DC ,DP ;θ)

27 end

1

backdoor attack.

Settings for CLB. As the suggestions in [23, 38], we adopt
projected gradient descent (PGD) [31] to generate the ad-
versarial perturbations [2–6, 17, 18, 29] within l∞ ball and
set its maximum magnitude ϵ = 16, step size 1.5, and 30
steps. The trigger pattern is the same as that in BadNets.
More experiments of different settings for CLB are listed in
Appendix H.

B.3. Defense setups

Settings for FP. FP [28] consists of two steps: pruning and
fine-tuning. (1) We randomly select 5% clean training sam-
ples as the local clean samples and forward them to obtain
the activation values of neurons in the last convolutional
layer. The dormant neurons on clean samples with the low-
est α% activation values will be pruned. (2) The pruned
model will be fine-tuned on the local clean samples for 10
epochs. Specially, the learning rate is set as 0.01, 0.01, 0.1,
0.1 on CIFAR-10, GTSRB, ImageNet and VGGFace2. Un-
less otherwise specified, other settings are the same as those
used in [28].

Note that FP is sensitive to its hyper-parameters and we
search for the best results by adjusting the pruned ratio
α% ∈ {20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%} for
six backdoor attacks on four datasets.
Settings for NAD. NAD [27] also aims to repair the back-
doored model and need 5% local clean training samples.
NAD contains two steps: (1) We first use the local clean
samples to fine-tune the backdoored model for 10 epochs.
Specially, the learning rate is set as 0.01, 0.01, 0.1, 0.1 on
CIFAR-10, GTSRB, ImageNet and VGGFace2. (2) The
fine-tuned model and the backdoored model will be re-
garded as the teacher model and student model to perform
the distillation process. . Unless otherwise specified, other
settings are the same as those used in [27].

We find that NAD is sensitive to the hyper-parameter β in
the distillation loss. Therefore, we search for the best results
by adjusting the hyper-parameter β from {500, 1000, 1500,
2000, 2500, 5000, 7500, 10000} for six backdoor attacks
on four datasets.
Settings for ABL. ABL [26] contains three stages: (1) To
obtain the poisoned samples, ABL first train the model on
the poisoned dataset for 20 epochs by LGA loss [26] and
isolate 1% training samples with the lowest loss. (2) Con-
tinue to train the model with the poisoned dataset after the
backdoor isolation for 70 epochs. (3) Finally, the model
will be unlearned by the isolation samples for 5 epochs. The
learning rate is 5×10−4 at the unlearning stage. Unless oth-
erwise specified, other settings are the same as those used
in [26].

We find that ABL is sensitive to the hyper-parameter γ
in LGA loss. We search for the best results by adjusting the
hyper-parameter γ from {0, 0.1, 0.2, 0.3, 0.4, 0.5} for six
backdoor attacks on four datasets.
Settings for DBD. DBD [23] contains three independent
stages: (1) DBD uses SimCLR [12] to perform the self-
supervised learning for 1,000 epochs. (2) Freeze the back-
bone and fine-tune the linear layer by supervised learning
for 10 epochs. (3) Adopt the MixMatch [8] to conduct the
semi-supervised learning for 200 epochs on CIFAR-10 and
GTSRB for 90 epochs on ImageNet and VGGFace2. Un-
less otherwise specified, other settings are the same as those

Table 2. The clean accuracy (ACC %) and the attack success rate (ASR %) of five backdoor defenses against six backdoor attacks on
VGGFace2. Best results among five backdoor defenses are highlighted in bold.

Attack No Defense FP NAD ABL DBD ASD (Ours)
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNets 91.7 99.9 91.5 100 56.1 6.5 91.2 19.6 91.6 0.4 90.9 0.5
Blend 90.9 99.9 87.1 96.0 50.8 7.3 90.1 96.7 91.5 0.7 91.8 0.6
WaNet 91.8 99.2 89.2 33.4 50.4 4.2 92.6 74.6 89.1 0.8 91.2 0.8
IAB 91.2 99.6 90.6 97.2 43.1 5.5 91.3 59.7 90.1 2.5 92.1 0.4
Refool 90.7 98.3 90.4 98.4 53.0 3.1 91.1 51.1 91.2 0.3 90.4 0.5
CLB 91.8 98.9 90.9 99.9 40.0 3.3 91.3 0 90.4 0.3 91.8 0.2
Average 91.4 99.3 89.9 87.5 48.9 5.0 91.3 50.3 90.6 0.8 91.4 0.5

Table 3. The clean accuracy (ACC %) and the attack success rate (ASR %) of five backdoor defenses against SSBA backdoor attack and
all2all attack on CIFAR-10. Best results among five backdoor defenses are highlighted in bold.

Attack No Defense FP NAD ABL DBD ASD (Ours)
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

SSBA 94.3 100 94.3 100 89.6 2.7 89.2 1.2 83.2 0.5 92.4 2.1
all2all 94.2 89.6 90.9 54.3 85.1 2.0 86.3 2.7 91.6 0.2 91.7 3.6

Table 4. The clean accuracy (ACC %) and the attack success rate
(ASR %) of three backdoor defenses against six backdoor attacks
on CIFAR-10. Best results are highlighted in bold.

Attack CutMix DPSGD ASD (Ours)
ACC ASR ACC ASR ACC ASR

BadNets 95.8 99.9 55.9 10.9 93.4 1.2
Blend 94.9 99.3 56.7 37.0 93.7 1.6
WaNet 95.1 99.9 55.1 15.8 93.1 1.7
IAB 94.9 100 85.9 99.7 93.2 1.3
Refool 95.4 99.9 55.4 59.2 93.5 0
CLB 96.1 1.1 55.7 7.6 93.1 0.9
Average 95.4 83.4 60.8 38.4 93.3 1.1

used in [23]. Since DBD is a stable backdoor defense and
not sensitive to its hyper-parameter, we directly use the de-
fault hyper-parameters and report the results.
Settings for our ASD. We adopt MixMatch [8] as our semi-
supervised learning framework and utilize Adam optimizer
with a learning rate 0.002 and batch size 64 to conduct the
semi-supervised training. The temperature T is set as 0.5
and the weight of unsupervised loss λu is set as 15. We
treat the clean data pool DC as a labeled container and the
polluted data pool DP as unlabeled. Our three stages are
performed ended at T1 = 60, T2 = 90 and T3 = 120 on
CIFAR-10 and ImageNet and T3 = 100 on GTSRB.

In the first stage, we fixed the clean seed samples in DC

and these clean seed samples will not be removed in the
first stage. The clean seed samples consist of 10 samples
per class. Besides, we adopt class-aware loss-guided data
split with L1(·) to progressively increase the number of the
seed samples. The number of each class will add n = 10
at every t = 5 epochs. Specially, L1(·) is chosen as sym-
metric cross-entropy (SCE) [40], as suggested in [23]. In
the second stage, we use class-agnostic loss-guided data
split to choose α% = 50% samples with the lowest L1(·)

losses intoDC . In the third stage, we adopt the meta-split to
split γ% = 50% samples with the lowest L1(fθ)−L1(fθ′)
losses into DC . In meta-split, we adopt stochastic gradient
descent (SGD) optimizer with the learning rate β = 0.015
and batch size 128 to perform one supervised learning for
fθ to obtain a virtual model fθ′ . For the virtual model, we
update half of the layers of its feature extractor and its linear
layer. Note that fθ′ is only used for data splits and will not
be involved in the followed training process. Besides, we
adaptively split the poisoned training dataset every epoch
and the polluted data poolDP is formed with the remaining
samples in the poisoned training dataset except the samples
in the clean data pool DC .

C. Results on VGGFace2 dataset

We conduct the experiments on VGGFace2 [10] dataset
and set the model architecture as DenseNet-121 [22]. The
results against six backdoor attacks are shown in Table 2.
We also search for the best results for FP, NAD and ABL
in different parameters. Besides, we set the learning rate of
supervised training in the meta-split of ASD as 0.02. Un-
less otherwise specified, other settings remain unchanged.
Compared with the previous four backdoor defenses, our
ASD can still achieve higher ACC and lower ASR on aver-
age, which verifies the superiority of our proposed ASD.

D. Results about more backdoor attacks

In addition to six backdoor attacks in our main experi-
ment, we also test our ASD on another two backdoor attack
paradigms, i.e., Sample-specific backdoor attack (SSBA)
[25], and all2all backdoor attack (all2all). For SSBA, we
follow [25] to use the same encoder-decoder network to
generate the poisoned samples. Note that all the backdoor

Original: curvy
ABL: 60 speed
DBD: 60 speed
ASD: 60 speed

Original: fence
ABL: kimono
DBD: kimono
ASD: kimono

Epoch

Clean Samples

Poisoned Samples

ABL

DBD

ASD (Ours)

Cat

Airplane

Cat
(0.21)

Cat
(0.16)

Horse
(0.15)

Cat
(0.53)

Cat
(0.43)

Dog
(0.36)

Cat
(0.87)

Cat
(0.75)

Dog
(0.77)

Dog

Purified Samples

Epoch

ABL

DBD

ASD (Ours)

Dog
(0.23)

Dog
(0.18)

Dog
(0.15)

Dog
(0.62)

Dog
(0.54)

Dog
(0.58)

Dog
(0.89)

Dog
(0.74)

Dog
(0.81)

Clean Samples

Dog

(a) Clean Samples

Original: curvy
ABL: 60 speed
DBD: 60 speed
ASD: 60 speed

Original: fence
ABL: kimono
DBD: kimono
ASD: kimono

Epoch

Clean Samples

Poisoned Samples

ABL

DBD

ASD (Ours)

Cat

Airplane

Cat
(0.21)

Cat
(0.16)

Horse
(0.15)

Cat
(0.53)

Cat
(0.43)

Dog
(0.36)

Cat
(0.87)

Cat
(0.75)

Dog
(0.77)

Dog

Purified Samples

Epoch

ABL

DBD

ASD (Ours)

Dog
(0.23)

Dog
(0.18)

Dog
(0.15)

Dog
(0.62)

Dog
(0.54)

Dog
(0.58)

Dog
(0.89)

Dog
(0.74)

Dog
(0.81)

Clean Samples

Dog

(b) Poisoned Samples

Figure 1. The label and the logit score for the clean samples and poisoned samples on the model trained by ABL, DBD and our ASD
against IAB. Our ASD can purify the poisoned samples successfully during the training process.

attacks in the above experiments belong to the all2one at-
tack and they relabel the poisoned samples to a target label.
For the all2all attack, we relabel samples from class i as
class (i+1) and we adopt IAB [33] as the trigger pattern, as
suggested in [42]. The results are shown in Table 3, which
verifies that ASD can defend against these two backdoor
attacks successfully.

E. Results about more backdoor defenses

We evaluate another two training-time backdoor de-
fenses, i.e., CutMix-based backdoor defense (CutMix)
[9] and differential privacy SGD-based backdoor defense
(DPSGD) [15]. For CutMix, we implement it as the de-
faulted setting in the original paper [9]. For DPSGD, we set
the clipping bound C = 1 and select the best noise scale σ
by the grid-search. We demonstrate the results in Table 4
and our ASD can still behave better than those two defenses
on average. Besides, we also show the purification process
of our ASD in Fig. 1.

F. Combination between DBD and our meta-
split

We show more results about combining our meta-split
with DBD in Fig. 2. From the overall results, we can ob-
serve that DBD can achieve 91+% ACC and 4−% ASR and
its training time will reduce a lot with our meta-split.

G. Comparison between DBD and our ASD

We choose 5,000 samples with the largest L1(·) losses
chosen by the model as clean hard samples. We show more

Table 5. The clean accuracy (ACC %), the attack success rate
(ASR %) and the corresponding split rate of poisoned samples on
CIFAR-10 for WaNet. Our ASD can achieve better results and a
lower split rate of poisoned samples.

Split rate of poisoned samples ACC ASR
ABL 33.2 84.1 2.2

ASD (Ours) 1.2 93.1 1.7

Table 6. The clean accuracy (ACC %), the attack success rate
(ASR %) and the corresponding split rate of poisoned samples
on CIFAR-10 for IAB. Our ASD can achieve better results and
a lower split rate of poisoned samples.

Split rate of poisoned samples ACC ASR
DBD 9.2 91.6 100

ASD (Ours) 1.1 93.2 1.3

results about the number of clean hard samples and poi-
soned samples to be split in DC for DBD and our ASD in
Fig. 3.

Furthermore, we list the split rate (%) of poisoned sam-
ples in DC along with the ACC (%) / ASR (%). Note that
we report the split rate in the maximum value during the
whole defense process. Here, we compare our ASD with
ABL for WaNet in Table 5 and DBD for IAB in Table 6.
Our ASD can achieve the lower split rates, higher ACCs and
lower ASRs. Specially, the split rate of poisoned samples in
DC is less than 1.2% during the whole ASD training.

H. Ablation study on attack settings
Different target labels. We evaluate our ASD using differ-
ent target labels yt ∈ {0, 1, 2, 3, 4}. The results are shown

1 20 40 60 80 100
Epoch

70

75

80

85

90

AC
C

(%
)

DBD
DBD with
Our Meta-split

(a) BadNets

1 20 40 60 80 100
Epoch

70

75

80

85

90

AC
C

(%
)

DBD
DBD with
Our Meta-split

(b) Blend

1 20 40 60 80 100
Epoch

70

75

80

85

90

AC
C

(%
)

DBD
DBD with
Our Meta-split

(c) WaNet

1 20 40 60 80 100
Epoch

70

75

80

85

90

AC
C

(%
)

DBD
DBD with
Our Meta-split

(d) CLB

Figure 2. Apply our meta-split to DBD on CIFAR-10 for four backdoor attacks, i.e., BadNets, Blend, WaNet, and CLB. Our proposed
meta-split can help accelerate DBD.

1 5 10 15 20 25 30
Epoch

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r

DBD Clean Hard Samples
ASD Clean Hard Samples
DBD Poisoned Samples
ASD Poisoned Samples

(a) BadNets

1 5 10 15 20 25 30
Epoch

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r

DBD Clean Hard Samples
ASD Clean Hard Samples
DBD Poisoned Samples
ASD Poisoned Samples

(b) Blend

1 5 10 15 20 25 30
Epoch

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r

DBD Clean Hard Samples
ASD Clean Hard Samples
DBD Poisoned Samples
ASD Poisoned Samples

(c) WaNet

1 5 10 15 20 25 30
Epoch

0

1000

2000

3000

4000

Nu
m

be
r

DBD Clean Hard Samples
ASD Clean Hard Samples
DBD Poisoned Samples
ASD Poisoned Samples

(d) CLB

Figure 3. The number of clean hard samples and poisoned samples to be split in DC for DBD and our ASD on CIFAR-10 for four backdoor
attacks, i.e., BadNets, Blend, WaNet, and CLB. Our ASD can select clean hard samples.

Table 7. The clean accuracy (ACC %) and the attack success rate
(ASR %) on CIFAR-10 for different target labels. Our ASD can
work well under different target labels.

Target Label yt = 0 yt = 1 yt = 2 yt = 3 yt = 4

BadNets ACC 92.8 93.1 92.7 93.4 93.2
ASR 1.1 0.4 1.5 1.2 0.7

Blend ACC 93.5 93.5 93.4 93.7 93.7
ASR 0.9 0.3 1.1 1.6 1.2

WaNet ACC 93.8 92.6 92.4 93.1 93.5
ASR 1.1 0.6 1.4 1.7 2.1

CLB ACC 93.4 93.7 92.8 93.1 93.2
ASR 0.7 1.4 1.1 0.9 0.4

Table 8. The clean accuracy (ACC %) and the attack success rate
(ASR %) on CIFAR-10 for different poisoned rates. Our ASD can
work well under different poisoned rates.

Poisoned rate 1% 5% 10% 15% 20%

BadNets ACC 93.8 93.4 94.2 92.3 93.6
ASR 1.8 1.2 1.8 1.1 0.9

Blend ACC 93.8 93.7 92.6 93.5 93.8
ASR 3.9 1.6 1.2 1.8 1.7

WaNet ACC 93.8 93.1 93.5 93.6 93.2
ASR 3.6 1.7 0.9 1.6 1.9

Table 9. The clean accuracy (ACC %) and the attack success rate
(ASR %) on CIFAR-10 for different poisoned rates for CLB. Our
ASD can work well under different poisoned rates for CLB.

Poisoned rate 0.6% 2.5% 5%

CLB (ϵ = 16) ACC 93.4 93.1 93.1
ASR 3.1 0.9 0

CLB (ϵ = 32) ACC 94.1 93.4 93.3
ASR 2.0 1.5 1.3

Table 10. The clean accuracy (ACC %) and the attack success rate
(ASR %) on CIFAR-10 for different trigger locations of BadNets.
Our ASD can work well under different trigger locations of Bad-
Nets.

Location Upper Upper Lower Lower Centerleft right left right
No ACC 94.9 93.7 94.5 94.1 93.8

Defense ASR 100 99.7 99.8 100 100
ASD ACC 93.4 93.1 93.7 92.8 93.6

(Ours) ASR 1.2 1.1 0.9 0.8 1.7

in Table 7, which verifies the effectiveness of the proposed
ASD.
Different poisoned rates. We test our ASD under different

Table 11. The clean accuracy (ACC %) and the attack success rate
(ASR %) on CIFAR-10 for different trigger sizes of BadNets. Our
ASD can work well under different trigger sizes of BadNets.

Trigger size 1× 1 2× 2 3× 3 4× 4
No ACC 94.7 94.9 94.2 93.7

Defense ASR 93.4 100 99.7 99.8
ASD ACC 93.2 93.4 92.7 93.1

(Ours) ASR 0.8 1.2 2.2 1.4

1 20 40 60 80 100 120
Epoch

0

20

40

60

80

100

AC
C

(%
) /

 A
SR

 (%
)

ACC BadNets
ACC Blend
ACC WaNet
ACC CLB
ASR BadNets
ASR Blend
ASR WaNet
ASR CLB

(a)

1 20 40 60 80 100 120
Epoch

0

20

40

60

80

100
AC

C
(%

) /
 A

SR
 (%

)

ACC BadNets
ACC Blend
ACC WaNet
ACC CLB
ASR BadNets
ASR Blend
ASR WaNet
ASR CLB

(b)

Figure 4. Ablation study for the loss-guided split of our ASD on
CIFAR-10 for four backdoor attacks, i.e., BadNets, Blend, WaNet,
and CLB. (a) Set class-agnostic loss-guided split in stage 1 instead
of class-aware one. (b) Set class-aware loss-guided split in stage
2 instead of class-agnostic one. The results show the necessity of
using class-aware one in stage 1 and using class-agnostic one in
stage 2.

poisoned rates ∈ {1%, 5%, 10%, 15%, 20%}. We demon-
strate the results in Table 8, which verifies the superior-
ity of the proposed ASD. Besides, as suggested in [38],
we also perform the CLB attack under the poisoned rate
∈ {0.6%, 2.5%, 5%} and the maximum perturbation mag-
nitude ϵ ∈ {16, 32} to evaluate ASD. The results are shown
in Table 9, which proves that our ASD can also defend the
CLB attack under different attack settings.
Different trigger patterns. For simplicity, we adopt the
BadNets on CIFAR-10 as an example to test the perfor-
mance of our ASD under different trigger patterns. On the
one hand, we set the trigger at different locations, as shown
in Table 10. On the other hand, we also adjust the trigger
size to evaluate our defense, as shown in Table 11. ASD can
achieve 92+% ACC and 2−% ASR in both two cases.

I. Ablation study on defense settings
Different modes in loss-guided split. In summary, loss-
guided split contains two modes during the previous two
stages: (1) Class-aware data split. (2) Class-agnostic data
split. In particular, we will discuss the necessity of the cor-
responding mode in different stages by conducting the fol-
lowed two experiments. Note that we only change the mode
of loss-guided data split and will not change the number in
DC of data split during every epoch.

Set class-agnostic loss-guided split in stage 1 instead of
class-aware one. As shown in Fig. 4a, if we use samples
with the lowest losses of the entire set to increase the seed
sample, the ACC will crash in stage 1 due to class imbal-
ance.

Set class-aware loss-guided split in stage 2 instead of
class-agnostic one. More poisoned samples in the target
class will be filled in DC with class-aware split in stage 2
and ASR can not be suppressed. Fig. 4b demonstrates that
BadNets will break the defense in this setting at 20% poi-
soned rate. In contrast, our defaulted ASD can still work at
20% poisoned rate, as shown in Table 8.
Different hyper-parameters in meta-split. The epoch,
learning rate and updated layer number are three key hyper-
parameters in meta-split.

From Fig. 5a, ACC will drop with the increase of the
epoch because the multi-epoch update can enable the model
to learn not only the poisoned samples but also the clean
hard samples well. As such, the large loss reduction makes
the clean hard samples hard to appear in DC based on the
proposed meta-split.

As for the learning rate in Fig. 5b, we can observe that
ACC will decrease as the learning rate is smaller. We sus-
pect that the reason may be that the low learning rate can
also prevent clean easy samples to be learned by the model.
Hence, the small loss reduction makes DC contain more
clean easy samples.

Fig. 5c indicates that the number of layers to be updated
in meta-split can also have an effect on the final perfor-
mance of the proposed ASD. We show the results of our
ASD at poisoned rate 1% in Fig. 5c. If we update fewer
layers in the meta-split, the clean easy samples can not be
learned by the model either, which introduces more clean
easy samples to DC and thus leads to a lower ACC. Once
all the layers are updated and the poisoned rate is low, the
difference in the loss reduction will decrease between the
poisoned samples and clean samples. Hence, DC can con-
tain more poisoned samples and induce the model to create
the backdoor mapping.
Different splitting rates α% in stage 2 and γ% stage 3.
We keep the same splitting rate in stage 2 and stage 3 to
conduct the experiment. Fig. 6 shows that our ASD can
achieve 90+% ACC and 5−% ASR in different splitting
rates during stage 2 and stage 3. In other words, ASD is not
sensitive to the hyper-parameter splitting rate.
Different model architectures under our ASD. We test
our ASD under ResNet-18 [20], VGG-11 [35], MobileNet
[21] and DenseNet-121 [22]. As suggested in [41], we con-
duct the backdoor attacks without backdoor defenses. Be-
sides, we set the learning rate as 0.01 in meta-split for our
ASD when using MobileNet. Unless otherwise specified,
other settings remain unchanged. As shown in Table 12,
our ASD can defend against backdoor attacks under differ-

Table 12. The clean accuracy (ACC %) and the attack success
rate (ASR %) on CIFAR-10 for different model architectures. Our
ASD can work well under different model architectures.

Attack Method ResNet18 VGG11 MobileNet DenseNet121
ACC ASR ACC ASR ACC ASR ACC ASR

BadNets No Defense 94.9 100 91.0 99.9 90.1 100 94.4 100
ASD(Ours) 93.4 1.2 90.4 3.7 89.4 4.6 93.1 2.2

Blend No Defense 94.1 98.3 90.6 98.4 87.7 99.7 94.1 98.2
ASD(Ours) 93.7 1.6 87.5 2.4 89.8 0.7 92.4 3.1

WaNet No Defense 93.6 99.9 89.7 99.4 86.9 99.8 93.9 100
ASD(Ours) 93.1 1.7 90.3 0.9 86.8 3.4 93.2 3.2

CLB No Defense 94.4 99.9 91.0 99.9 88.9 7.2 94.2 2.3
ASD(Ours) 93.1 0.9 89.2 3.1 88.1 2.4 93.1 1.4

Table 13. The clean accuracy (ACC %) and the attack success rate
(ASR %) on CIFAR-10 for different randomly sampled seed sam-
ples. The experiments (±std over 5 random runs) are conducted
on CIFAR-10. Our ASD can achieve the stable performance when
the seed samples are differently sampled.

BadNets Blend WaNet CLB
ACC 92.5 (±0.7) 92.9 (±0.6) 93.2 (±0.6) 93.0 (±0.5)
ASR 1.9 (±0.6) 1.5 (±0.5) 2.0 (±0.7) 2.2 (±0.8)

Table 14. The clean accuracy (ACC %) and the attack success rate
(ASR %) on CIFAR-10 for different numbers of seed samples. The
default value (i.e., 100) used in our ASD is feasible on CIFAR-10.

Number of seed samples 10 50 100

BadNets ACC 80.6 91.4 93.4
ASR 0 4.8 1.2

Blend ACC 92.5 86.8 93.7
ASR 99.1 10.4 1.6

WaNet ACC 85.9 92.7 93.1
ASR 99.7 6.2 1.7

CLB ACC 93.0 93.0 93.1
ASR 3.6 2.4 0.9

ent model architectures.

Ablation study about seed samples. Seed samples in each
dataset are randomly sampled and then fixed during ASD.
Here, we report the results (mean±std) of 5 runs in Table
13. The results demonstrate the stability of our ASD under
different sampled seed samples. Besides, we also conduct
the experiments under different numbers of seed samples.
As shown in Table 14, it might result in the failure of ASD
when the number of seed samples is less than 100. Note
that 100 is much smaller than that (10,000) required in pre-
vious defenses [27, 28, 39, 42]. Besides, we also show seed
samples can be taken from a different available dataset in
Sec. 5.4, which indicates the flexibility of our seed sample
selection.

Performance on clean dataset. Our ASD can achieve
93.8% ACC on clean CIFAR10, preserving the clean ACC
well.

J. Details about different semi-supervised
methods

Semi-supervised learning [7,8,36,43,45] studies how to
leverage a training dataset with both labeled data and un-
labeled data to obtain a model with high accuracy. In ad-
dition to its application in normal training, semi-supervised
learning also serves as a powerful means for the security of
DNNs [1, 11, 23].
MixMatch Loss [8]. Given a batch X ⊂ DC of labeled
samples, and a batch U ⊂ DP of unlabeled samples, Mix-
Match generates a guessed label distribution q̄ for each un-
labeled sample u ∈ U and adopts MixUp to augment X and
U to X ′ and U ′. The supervised loss Ls is defined as:

Ls =
∑

(x,q)∈X ′

H(px, q) , (1)

where px is the prediction of x, q is the one-hot label and
H(·, ·) is the cross-entropy loss. The unsupervised loss Lu

is defined as:

Lu =
∑

(u,q̄)∈U ′

∥pu − q̄∥22 , (2)

where pu is the prediction of u.
Finally, the MixMatch loss can be defined as:

L = Ls + λ · Lu, (3)

where λ is a hyper-parameter for trade-off.
UDA [43]. Given a batch X ⊂ DC of labeled samples, and
a batch U ⊂ DP of unlabeled samples, UDA constructed
a guessed label distribution q̄ for each unlabeled sample
u ∈ U after the weak augmentation. Moreover, it adopts
the strong augmentation (RandAugment) to augment U to
U ′ and generates a guessed label distribution q̄′. The super-
vised loss Ls is defined as:

Ls =
∑

(x,q)∈X
H(px, q) , (4)

where H(·, ·) is the cross-entropy loss. The unsupervised
loss Lu is defined as:

Lu =
∑

(u,q̄)∈U,(u,q̄′)∈U ′

H(q̄ || q̄′) , (5)

where pu is the prediction of u.
Finally, the UDA loss can be defined as:

L = Ls + λ · Lu, (6)

where λ is a hyper-parameter for trade-off.
ReMixMatch Loss [7]. Given a batch X ⊂ DC of la-
beled samples, and a batch U ⊂ DP of unlabeled sam-
ples, ReMixMatch produces a guessed label distribution q̄

1 2 3 4 5
Epoch

80

82

84

86

88

90

92

94
AC

C
(%

)

0

10

20

30

40

50

60

AS
R

(%
)ACC BadNets

ACC Blend
ACC WaNet
ACC CLB
ASR BadNets
ASR Blend
ASR WaNet
ASR CLB

(a)

0.005 0.01 0.015 0.02 0.025
Learning Rate

80

82

84

86

88

90

92

94

AC
C

(%
)

0

10

20

30

40

50

60

AS
R

(%
)ACC BadNets

ACC Blend
ACC WaNet
ACC CLB
ASR BadNets
ASR Blend
ASR WaNet
ASR CLB

(b)

1 2 3 4 5
Updated Layer Number

70

75

80

85

90

95

AC
C

(%
)

0

20

40

60

80

100

AS
R

(%
)ACC BadNets

ACC Blend
ACC WaNet
ACC CLB
ASR BadNets
ASR Blend
ASR WaNet
ASR CLB

(c)

Figure 5. Ablation study for the meta-split on CIFAR-10 for four backdoor attacks, i.e., BadNets,
Blend, WaNet, and CLB. (a) The epoch of supervised learning. (b) Learning rate. (c) Updated
layer number.

30 40 50 60 70
Splitting Rate (%)

86

88

90

92

94

AC
C

(%
)

0

10

20

30

40

50

60

AS
R

(%
)ACC BadNets

ACC Blend
ACC WaNet
ACC CLB
ASR BadNets
ASR Blend
ASR WaNet
ASR CLB

Figure 6. Ablation study for
the splitting rate in Stage 2 and
Stage 3 on CIFAR-10 for four
backdoor attacks.

for each unlabeled sample u ∈ U after the weak augmen-
tation. Besides, it adopts MixUp, the strong augmentation
(CTAugment) and the weak augmentation to augment X ,
U , U to X ′, U ′, Û1. In total, the ReMixMatch loss can be
defined as:

L =
∑

(x,q)∈X ′

H(px, q) + λU
∑

(u,q̄)∈U ′

H(pu, q̄)

+λÛ1

∑
(u1,q̄)∈Û1

H(pu1 , q̄)

+λr

∑
u1∈Û1

H(pθ (r | Rotate(u1, r)), r) ,

(7)

where Rotate(u1, r) denotes that rotate an image u1 ∈ Û1
the rotation angle r uniformly from r ∼ {0, 90, 180, 270}
and H(·, ·) is the cross-entropy loss.

K. Details of the adaptive attack
We state the details of the adaptive attack in the main

paper.
Problem formulation. Suppose that the attackers choose
a number of samples to be poisoned Dp = {(xi, yi)}Ni=1

and Dc = {(xi, yi)}Mi=1 denotes the remain clean samples,
fθ denotes a trained model. The objective function for the
trigger pattern p in the adaptive attacks can be formulated as
(8), i.e., minimizing the gradient for the poisoned samples
w.r.t the trained model fθ and maximizing that for the clean
samples.

min
p

1

N

∑
(x,y)∈Dp

dL (fθ(x+ p), y)

dθ

− 1

M

∑
(x,y)∈Dc

dL (fθ(x), y)
dθ

, s.t., ∥ p ∥∞≤ ϵ,

(8)

where ϵ is the magnitude of the trigger pattern.
Settings and more results. We adjust the perturbation
magnitudes ϵ of the trigger pattern for ABL, DBD and our

Table 15. The results of ABL, DBD and our ASD under the adap-
tive attack in different perturbation magnitudes ϵ of the trigger.

ϵ 4 8 16 32 Average
ABL 86.1 / 0.8 71.6 / 99.7 75.1 / 99.8 86.7 / 99.4 79.9 / 74.9
DBD 90.4 / 0.2 91.2 / 0.7 90.4 / 0.8 91.7 / 99.9 90.9 / 25.4
ASD (Ours) 93.2 / 1.1 93.5 / 1.3 92.8 / 0.9 93.3 / 1.2 93.2 / 1.1

ASD. As shown in Table 15, our ASD can achieve the best
average results among three backdoor defenses. Besides,
we also study the effect of the loss objectives to train the
surrogate model on the results. Specially, our ASD can ob-
tain 91+% ACC and 5−% ASR by using either the super-
vised loss or the semi-supervised loss to train the surrogate
model in the adaptive attack.
Reasons for our successful defense against the adaptive
attack. The superiority of ASD in adaptive attack bene-
fits a lot from the semi-supervised loss objective and two
dynamic data pools. Adaptive attacks aim at optimizing
triggers to minimize the gaps between clean and poisoned
samples on surrogate models, which makes poisoned sam-
ples difficult to defend. However, such reduced gaps are
highly dependent on model checkpoint, which means the
gaps might be large on some other checkpoints, especially
during ASD training with semi-supervised loss on two dy-
namic data pools (DC , DP), which can greatly increase the
diversity of optimized checkpoints. Besides, as shown in
manuscript, ASD is good at separating model checkpoint-
dependent clean hard examples from poisoned ones with
meta-split. Moreover, the strong data augmentation and
pseudo-labeling of MixMatch used in ASD also help de-
stroy the trigger pattern.

L. Resistance to another adaptive attack
In this section, we propose another adaptive attack for

our proposed ASD. We adopt the same poisoning-based
threat model [13, 19, 38] as that in the main paper.
Problem formulation. Suppose that the attackers choose
a number of samples to be poisoned Dp = {(xi, yi)}Ni=1

and Dt = {(xi, yt)}Mi=1 denotes the remaining clean sam-
ples with the attacker-specified target label yt, g denotes
a trained model. Since we adopt semi-supervised learning
to purify the polluted pool and this adaptive attack aims to
destruct the purification process, the trigger pattern p can
be optimized by minimizing the distance between poisoned
samples and the target class in the feature space as:

min
p

∥∥∥∥∥ 1

N

∑
(x,y)∈Dp

g (x+ p)− 1

M

∑
(x,y)∈Dt

g (x)

∥∥∥∥∥
2

,

s.t., ∥ p ∥∞≤ ϵ,

(9)

where ϵ is the magnitude of the trigger pattern.
Settings and results. We adopt the same settings as that
in our main paper. The adaptive attack can achieve 94.9%
ACC and 99.9% ASR without any defense. This attack can
obtain 93.7% ACC and only 1.5% ASR under our ASD.
Hence, our ASD can still work well under this adaptive at-
tack due to the low transferability of the trigger pattern.

M. Details about the loss distribution during
meta-split

We show more results of the loss distribution during the
meta-split of our proposed ASD in Fig. 7, Fig. 8, Fig. 9 and
Fig. 10.

N. Details about the grid-search for FP, NAD,
ABL, and DPSGD

We search for the best results by grid search for FP,
NAD, ABL and DPSGD and show the results in Table 16,
Table 17, Table 18, Table 19, Table 20, Table 21, Table 22,
Table 23, Table 24, Table 25, Table 26, Table 27, Table 28.
The details of the grid search have been stated in Appendix
B.

0 2 4 6 8 10
Loss Value

0

2

4

6

8

Pr
op

or
tio

n
(%

)

Clean samples
Poisoned samples

(a) BadNets

0 2 4 6 8 10
Loss Value

0

2

4

6

8

Pr
op

or
tio

n
(%

)

Clean samples
Poisoned samples

(b) Blend

0 2 4 6 8 10
Loss Value

0

2

4

6

8

10

12

Pr
op

or
tio

n
(%

)

Clean samples
Poisoned samples

(c) WaNet

0 2 4 6 8 10
Loss Value

0

2

4

6

8

10

12

Pr
op

or
tio

n
(%

)

Clean samples
Poisoned samples

(d) CLB

Figure 7. The loss distribution of samples on the model fθ after the first two stages on CIFAR-10 for four backdoor attacks.

0 2 4 6 8 10
Loss Value

0

5

10

15

20

25

30

35

Pr
op

or
tio

n
(%

)

0 1

0
1
2
3
4
5

Clean samples
Poisoned samples

(a) BadNets

0 2 4 6 8 10
Loss Value

0

5

10

15

20

25

30

35

40

Pr
op

or
tio

n
(%

)

0 1
0
1
2
3
4
5

Clean samples
Poisoned samples

(b) Blend

0 2 4 6 8 10
Loss Value

0

10

20

30

40

Pr
op

or
tio

n
(%

)
0 1

0
1
2
3
4
5

Clean samples
Poisoned samples

(c) WaNet

0 2 4 6 8 10
Loss Value

0

10

20

30

40

50

60

Pr
op

or
tio

n
(%

)

0 1
0
1
2
3
4
5

Clean samples
Poisoned samples

(d) CLB

Figure 8. The loss distribution of samples on the ‘virtual model’ fθ′ in Fig. 7 after one-epoch supervised learning on CIFAR-10 for four
backdoor attacks.

-10 -5 0 5 10
Loss Reduction

0

1

2

3

4

5

6

7

8

Pr
op

or
tio

n
(%

)

Clean samples
Poisoned samples

(a) BadNets

-10 -5 0 5 10
Loss Reduction

0

1

2

3

4

5

6

7

8

Pr
op

or
tio

n
(%

)

Clean samples
Poisoned samples

(b) Blend

-10 -5 0 5 10
Loss Reduction

0

2

4

6

8

10

Pr
op

or
tio

n
(%

)

Clean samples
Poisoned samples

(c) WaNet

-10 -5 0 5 10
Loss Reduction

0

2

4

6

8

10

Pr
op

or
tio

n
(%

)
Clean samples
Poisoned samples

(d) CLB

Figure 9. The loss reduction between fθ in Fig. 7 and fθ′ in Fig. 8 on CIFAR-10 for four backdoor attacks.

0 2 4 6 8 10
Loss Value

0

1

2

3

4

5

6

7

8

Pr
op

or
tio

n
(%

)

Clean samples
Poisoned samples

(a) BadNets

0 2 4 6 8 10
Loss Value

0

1

2

3

4

5

6

7

8

Pr
op

or
tio

n
(%

)

Clean samples
Poisoned samples

(b) Blend

0 2 4 6 8 10
Loss Value

0

2

4

6

8

10

12

Pr
op

or
tio

n
(%

)

Clean samples
Poisoned samples

(c) WaNet

0 2 4 6 8 10
Loss Value

0

2

4

6

8

10

12

Pr
op

or
tio

n
(%

)

Clean samples
Poisoned samples

(d) CLB

Figure 10. The loss distribution of samples on the model fθ after all three stages on CIFAR-10 for four backdoor attacks.

Table 16. Search for the best results by the grid-search for FP on CIFAR-10.

Ratio BadNets Blend WaNet IAB Refool CLB
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

0.2 94.5 100 93.9 97.9 93.4 100 94.1 99.9 93.9 91.8 90.2 92.8
0.3 94.4 100 93.8 97.2 93.9 99.9 93.9 99.9 93.9 91.9 90.4 94.4
0.4 94.5 100 93.8 96.1 93.6 99.8 93.9 99.6 93.6 92.3 90.3 96.9
0.5 94.6 100 93.7 96.2 93.7 99.7 93.9 100 93.2 92.5 90.4 98.8
0.6 94.4 100 93.6 96.9 93.7 99.9 93.3 99.9 92.3 92.1 94.9 99.9
0.7 94.2 100 93.4 93.2 93.3 99.8 92.9 99.8 91.2 91.8 94.4 99.8
0.8 93.9 1.8 93.8 89.5 93.1 99.8 92.3 99.7 92.7 87.9 93.3 100
0.9 94.2 100 92.9 77.1 90.4 98.6 89.3 98.1 92.1 86.1 91.17 99.9

Table 17. Search for the best results by the grid-search for FP on GTSRB.

Ratio BadNets Blend WaNet IAB Refool CLB
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

0.2 97.4 100 96.8 98.7 97.6 100 97.6 100 97.9 98.2 94.5 99.7
0.3 97.2 100 96.7 98.6 97.2 100 97.3 100 98.1 96.4 93.6 99.3
0.4 97.3 100 96.7 98.5 97.2 100 97.7 100 97.9 94.2 89.3 99.4
0.5 97.1 100 96.5 98.2 97.4 100 97.5 100 97.3 60.9 83.2 99.5
0.6 97.1 100 96.5 98.1 97.2 99.9 97.5 100 96.6 49.1 67.6 99.7
0.7 96.5 99.9 96.1 85.2 96.3 99.9 97.4 99.5 95.7 47.3 52.6 99.2
0.8 93.4 73.7 91.4 68.1 92.5 21.4 96.4 99.2 91.5 0.2 39.4 99.6
0.9 84.2 0 78.8 85.7 85.3 23.6 86.9 0 87.3 0.4 23.6 99.4

Table 18. Search for the best results by the grid-search for FP on ImageNet.

Ratio BadNets Blend WaNet IAB Refool CLB
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

0.2 76.7 51.1 78.1 93.9 79.1 95.9 78.9 99.4 77.7 84.4 79.9 88.3
0.3 75.9 46.1 77.6 93.4 78.9 96.3 78.3 99.9 76.7 74.1 79.1 69.2
0.4 73.9 20.7 76.1 90.9 77.5 95.5 76.9 98.9 75.9 75.5 77.6 60.1
0.5 70.3 1.6 74.4 86.2 74.2 94.4 76.3 99.9 73.8 62.7 75.7 67.2
0.6 73.1 14.9 72.7 85.9 72.5 95.2 72.8 98.2 70.5 48.3 73.2 38.3
0.7 70.1 0.3 71.1 87.8 75.1 95.1 73.9 99.9 73.6 63.8 69.8 49.5
0.8 66.4 0 72.9 77.9 71.4 92.2 70.9 99.4 71.2 52.5 70.9 53.7
0.9 84.3 0 63.4 9.5 58.2 84.4 58.7 84.2 61.4 10.3 54.2 0

Table 19. Search for the best results by the grid-search for FP on VGGFace2.

Ratio BadNets Blend WaNet IAB Refool CLB
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

0.2 91.2 100 90.2 99.9 91.8 75.3 90.7 97.5 90.7 98.6 90.8 99.8
0.3 91.1 100 90.1 99.9 91.8 75.7 90.8 97.4 90.8 98.7 90.9 99.9
0.4 91.1 100 90.2 99.9 91.7 75.8 90.7 97.3 90.7 98.6 90.8 99.9
0.5 91.5 100 90.2 99.9 91.6 76.7 90.6 97.3 90.9 98.7 90.8 99.8
0.6 91.0 100 91.1 99.9 91.6 78.5 90.6 97.2 90.4 98.4 90.6 99.9
0.7 91.1 100 90.3 100 91.4 81.1 90.5 97.6 90.7 98.9 90.7 99.9
0.8 91.5 100 89.9 100 90.8 79.6 90.6 97.4 90.2 97.9 90.2 100
0.9 89.3 100 87.1 96.0 89.2 33.4 89.3 98.4 86.8 98.5 88.8 99.9

Table 20. Search for the best results by the grid-search for NAD on CIFAR-10.

β
BadNets Blend WaNet IAB Refool CLB

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
500 90.6 12.9 89.8 17.2 89.2 21.8 88.5 29.7 89.9 9.7 86.4 9.5

1000 89.7 10.0 87.4 4.3 87.5 11.8 85.8 8.3 89.7 10.5 81.8 8.6
1500 88.2 4.6 85.8 3.4 83.1 13.1 82.8 4.2 87.7 5.4 72.5 6.2
2000 84.7 6.9 80.2 5.9 71.3 6.7 75.5 2.5 86.2 3.6 65.3 6.3
2500 83.1 4.5 75.8 4.5 64.3 8.1 67.9 1.1 81.1 3.1 43.9 10.9
5000 32.2 2.7 32.1 3.7 40.2 6.3 39.4 7.2 45.5 2.8 32.3 5.1
7500 18.2 5.1 29.8 3.1 25.7 4.1 24.5 1.9 30.3 8.1 18.4 11.1
10000 20.8 1.1 20.2 7.4 23.9 10.4 20.1 6.1 24.1 6.2 21.4 14.4

Table 21. Search for the best results by the grid-search for NAD on GTSRB.

β
BadNets Blend WaNet IAB Refool CLB

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
500 97.1 0.2 96.9 99.9 97.2 67.8 96.9 0.1 97.3 93.6 5.7 40.1

1000 96.8 0 96.8 99.5 97.1 69.1 97.1 0.1 97.3 72.4 4.1 41.7
1500 96.5 0 96.3 99.9 96.9 76.1 95.9 0.7 97.1 47.5 4.7 44.6
2000 93.5 0 96.2 99.3 96.7 70.9 94.5 0.5 95.5 1.4 4.8 40.1
2500 19.7 0 96.2 99.1 96.5 47.1 20.8 0 93.6 3.8 5.5 36.3
5000 6.9 0 93.3 62.4 78.1 2.4 5.9 0 7.1 0 3.3 21.1
7500 5.7 1.2 55.7 1.2 4.3 0 8.4 0.5 4.3 0 4.6 34.3
10000 5.9 0.7 10.3 0 5.8 31.7 7.2 1.4 6.6 0 2.9 29.4

Table 22. Search for the best results by the grid-search for NAD on ImageNet.

β
BadNets Blend WaNet IAB Refool CLB

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
500 64.1 6.22 64.8 0.3 63.8 1.3 63.1 4.8 63.7 0.3 63.4 3.3

1000 65.1 5.1 63.6 0.6 62.8 0.7 63.4 1.1 62.5 0 62.2 1.9
1500 61.6 4.2 62.27 0.5 62.2 0.8 63.8 0.6 60.8 0 61.8 4.6
2000 60.1 2.1 59.6 0.4 59.7 1.2 60.6 0.3 59.5 0.3 62.7 1.7
2500 54.5 1.5 57.5 0 56.4 0.5 57.9 0.2 58.5 0.1 53.2 1.3
5000 51.7 3.2 51.5 0.4 50.2 0.5 48.5 0.6 51.5 0 47.1 0.6
7500 43.8 1.8 44.7 0 38.2 0.6 43.4 0.4 41.4 0 40.9 0.2
10000 33.8 1.4 33.9 0.6 41.1 1.2 35.4 0.6 35.2 0.1 37.1 0

Table 23. Search for the best results by the grid-search for NAD on VGGFace2.

β
BadNets Blend WaNet IAB Refool CLB

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
500 42.6 5.5 49.1 10.9 48.7 3.7 43.1 5.5 50.8 4.3 42.9 15.1

1000 53.4 10.6 46.2 8.1 43.9 12.2 25.7 5.1 52.9 2.1 46.3 18.4
1500 48.5 5.8 43.7 5.6 50.4 4.2 37.9 2.3 53.0 3.1 48.7 15.6
2000 56.1 6.5 47.3 4.1 43.7 4.1 44.7 8.8 52.8 5.6 34.6 3.0
2500 41.8 1.4 50.8 7.3 43.9 3.7 42.7 8.9 53.3 7.1 40.0 3.3
5000 53.8 11.4 28.9 2.6 41.1 2.2 31.9 5.3 52.5 4.3 40.2 11.2
7500 50.7 2.7 47.9 2.5 49.5 2.8 32.6 40.9 53.2 5.3 38.7 2.2
10000 52.7 8.5 45.5 6.4 40.7 5.5 30.6 12.3 50.5 5.1 27.2 13.9

Table 24. Search for the best results by the grid-search for ABL on CIFAR-10.

γ
BadNets Blend WaNet IAB Refool CLB

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0 93.8 1.1 90.9 2.1 84.1 2.2 93.4 5.1 79.9 99.7 86.6 1.3

0.1 66.2 100 91.9 1.6 75.7 100 88.2 100 82.7 1.3 79.9 14.4
0.2 70.8 100 81.3 99.3 80.1 100 85.7 100 80.3 99.1 83.8 7.67
0.3 72.8 100 80.1 99.3 77.7 100 80.6 100 69.7 99.9 83.8 25.6
0.4 64.9 100 86.8 99.2 78.6 100 73.8 100 79.5 99.9 78.3 22.6
0.5 71.9 100 74.5 99.9 77.5 100 76.9 100 71.9 99.9 77.9 12.5

Table 25. Search for the best results by the grid-search for ABL on GTSRB.

γ
BadNets Blend WaNet IAB Refool CLB

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0 97.1 0 95.6 12.5 94.2 10.9 93.3 100 95.4 0 90.4 2.3

0.1 80.9 100 94.2 99.9 91.8 100 91.4 100 96.2 0 86.7 100
0.2 85.5 100 94.4 99.9 91.9 100 90.9 100 95.7 0 80.1 100
0.3 97.1 0 97.1 0.5 97.0 0.4 97.1 0.8 96.2 0 75.2 100
0.4 96.8 0 96.9 0.7 96.7 0 97.4 0.6 95.5 0 72.3 100
0.5 97.1 0 96.7 2.1 96.1 0.2 96.9 2.1 95.6 0 69.1 100

Table 26. Search for the best results by the grid-search for ABL on ImageNet.

γ
BadNets Blend WaNet IAB Refool CLB

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0 80.2 0.1 83.6 100 84.8 99.8 79.7 3.9 76.2 0.2 82.8 0.8

0.1 82.9 0 83.4 100 82.5 100 81.8 1.1 78.5 0.3 82.7 64.3
0.2 73.4 100 82.1 100 81.5 99.9 82.6 99.9 79.4 0.5 82.8 56.2
0.3 82.8 0 75.9 1.0 69.2 2.3 80.6 0 80.1 1.6 80.6 60.1
0.4 83.1 0 78.6 1.1 74.9 1.1 81.7 0.1 80.1 2.6 82.3 52.5
0.5 83.1 0.1 82.6 0.7 71.4 2.5 81.7 0 80.4 2.7 80.2 59.4

Table 27. Search for the best results by the grid-search for ABL on VGGFace2.

γ
BadNets Blend WaNet IAB Refool CLB

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0 90.9 65.2 90.1 96.7 90.3 89.7 91.2 99.3 90.9 56.1 91.4 0.3

0.1 90.4 99.9 90.6 97.6 91.8 100 91.2 79.1 91.1 51.1 90.6 0.3
0.2 91.2 19.6 90.2 100 92.6 74.6 91.3 59.7 91.3 51.7 90.9 0.1
0.3 90.8 85.4 91.1 99.9 91.9 99.8 92.0 80.1 91.6 62.8 91.2 0.1
0.4 90.5 100 90.3 99.9 91.5 81.4 92.8 100 90.0 58.8 90.8 0
0.5 90.2 100 90.8 100 91.3 81.1 91.2 100 90.2 61.2 91.3 0

Table 28. Search for the best results by the grid-search for DPSGD on CIFAR-10.

σ
BadNets Blend WaNet IAB Refool CLB

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
0 10.1 100 10.9 100 10.2 100 10.1 100 10.9 100 10.1 0

0.01 85.5 100 84.4 87.2 84.3 99.9 85.9 99.7 83.2 91.7 84.6 38.2
0.05 79.2 99.8 68.5 63.1 76.4 94.5 77.7 99.8 76.8 82.7 76.7 10.3
0.1 67.2 100 64.3 75.2 63.5 75.4 65.3 99.8 65.4 70.2 65.1 8.2
0.2 55.9 10.9 56.7 37.0 55.1 15.8 54.4 99.8 55.4 59.2 55.7 7.6

References
[1] Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Al-

hussein Fawzi, Robert Stanforth, and Pushmeet Kohli. Are
labels required for improving adversarial robustness? In
NeurIPS, 2019. 7

[2] Jiawang Bai, Bin Chen, Yiming Li, Dongxian Wu, Weiwei
Guo, Shu-tao Xia, and En-hui Yang. Targeted attack for deep
hashing based retrieval. In ECCV, 2020. 2

[3] Jiawang Bai, Li Yuan, Shu-Tao Xia, Shuicheng Yan, Zhifeng
Li, and Wei Liu. Improving vision transformers by revisiting
high-frequency components. In ECCV, 2022. 2

[4] Yang Bai, Yan Feng, Yisen Wang, Tao Dai, Shu-Tao Xia, and
Yong Jiang. Hilbert-based generative defense for adversarial
examples. In ICCV, 2019. 2

[5] Yang Bai, Yuyuan Zeng, Yong Jiang, Yisen Wang, Shu-Tao
Xia, and Weiwei Guo. Improving query efficiency of black-
box adversarial attack. In ECCV, 2020. 2

[6] Yang Bai, Yuyuan Zeng, Yong Jiang, Shu-Tao Xia, Xingjun
Ma, and Yisen Wang. Improving adversarial robustness via
channel-wise activation suppressing. In ICLR, 2021. 2

[7] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Ku-
rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-
match: Semi-supervised learning with distribution alignment
and augmentation anchoring. In ICLR, 2020. 7

[8] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In NeurIPS,
2019. 2, 3, 7

[9] Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin Ghi-
asi, Jonas Geiping, Micah Goldblum, Tom Goldstein, and
Arjun Gupta. Strong data augmentation sanitizes poison-
ing and backdoor attacks without an accuracy tradeoff. In
ICASSP, 2021. 4

[10] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and An-
drew Zisserman. Vggface2: A dataset for recognising faces
across pose and age. In FG. IEEE, 2018. 1, 3

[11] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C
Duchi, and Percy S Liang. Unlabeled data improves adver-
sarial robustness. In NeurIPS, 2019. 7

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020. 2

[13] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn
Song. Targeted backdoor attacks on deep learning systems
using data poisoning. 2017. 1, 8

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 1

[15] Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly detec-
tion and backdoor attack detection via differential privacy. In
ICLR, 2020. 4

[16] Mark Everingham and John Winn. The pascal visual object
classes challenge 2012 (voc2012) development kit. Pattern
Anal. Stat. Model. Comput. Learn., Tech. Rep, 2007:1–45,
2012. 1

[17] Jindong Gu, Volker Tresp, and Yao Qin. Are vision trans-
formers robust to patch perturbations? In ECCV, 2022. 2

[18] Jindong Gu, Baoyuan Wu, and Volker Tresp. Effective and
efficient vote attack on capsule networks. In ICLR, 2021. 2

[19] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain. In IEEE Access, 2019. 1, 8

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1, 6

[21] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. In
CVPR, 2017. 6

[22] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In CVPR, 2017. 1, 3, 6

[23] Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui
Ren. Backdoor defense via decoupling the training process.
In ICLR, 2022. 1, 2, 3, 7

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1

[25] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran
He, and Siwei Lyu. Invisible backdoor attack with sample-
specific triggers. In ICCV, 2021. 3

[26] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Anti-backdoor learning: Training clean
models on poisoned data. In NeurIPS, 2021. 1, 2

[27] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Neural attention distillation: Erasing back-
door triggers from deep neural networks. In ICLR, 2021. 1,
2, 7

[28] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-
pruning: Defending against backdooring attacks on deep
neural networks. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 273–294. Springer,
2018. 2, 7

[29] Xinwei Liu, Jian Liu, Yang Bai, Jindong Gu, Tao Chen, Xi-
aojun Jia, and Xiaochun Cao. Watermark vaccine: Adversar-
ial attacks to prevent watermark removal. In ECCV, 2022. 2

[30] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Re-
flection backdoor: A natural backdoor attack on deep neural
networks. In ECCV, 2020. 1

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In ICLR, 2018. 2

[32] Anh Nguyen and Anh Tran. Wanet–imperceptible warping-
based backdoor attack. In ICLR, 2021. 1

[33] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic
backdoor attack. In NeurIPS, 2020. 1, 4

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 1

[35] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015. 6

[36] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence.
In NeurIPS, 2020. 7

[37] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
Christian Igel. The german traffic sign recognition bench-
mark: a multi-class classification competition. In IJCNN,
2011. 1

[38] Alexander Turner, Dimitris Tsipras, and Aleksander Madry.
Clean-label backdoor attacks. 2018. 2, 6, 8

[39] Haotao Wang, Junyuan Hong, Aston Zhang, Jiayu Zhou, and
Zhangyang Wang. Trap and replace: Defending backdoor
attacks by trapping them into an easy-to-replace subnetwork.
In NeurIPS, 2022. 7

[40] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng
Yi, and James Bailey. Symmetric cross entropy for robust
learning with noisy labels. In ICCV, 2019. 3

[41] Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu,
Shaokui Wei, Danni Yuan, Chao Shen, and Hongyuan Zha.
Backdoorbench: A comprehensive benchmark of backdoor
learning. In NeurIPS, 2022. 6

[42] Dongxian Wu and Yisen Wang. Adversarial neuron pruning
purifies backdoored deep models. In NeurIPS, 2021. 4, 7

[43] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and
Quoc Le. Unsupervised data augmentation for consistency
training. In NeurIPS, 2020. 7

[44] Tong Zhang. Solving large scale linear prediction problems
using stochastic gradient descent algorithms. In ICML, 2004.
1

[45] Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-
supervised learning. Synthesis lectures on artificial intelli-
gence and machine learning, 3(1):1–130, 2009. 7

	. Algorithm outline
	. Implementation details
	. Datasets and DNN models
	. Attack setups
	. Defense setups

	. Results on VGGFace2 dataset
	. Results about more backdoor attacks
	. Results about more backdoor defenses
	. Combination between DBD and our meta-split
	. Comparison between DBD and our ASD
	. Ablation study on attack settings
	. Ablation study on defense settings
	. Details about different semi-supervised methods
	. Details of the adaptive attack
	. Resistance to another adaptive attack
	. Details about the loss distribution during meta-split
	. Details about the grid-search for FP, NAD, ABL, and DPSGD

