
DKT: Diverse Knowledge Transfer Transformer for Class Incremental Learning
Supplementary materials

A. Appendix

A.1. Experiment details

A.1.1 Implementation details

We train our model on all datasets for 500 epochs. The op-
timizer is Adamw which sets weight-decay as 1e−6, decay-
rate as 0.1 and cosine learning rate as 1e−3, including 5
epochs of warmup like other vision transformer’s training.
Also, the backbone is modified from RVT [6]. we applied
the standard data augmentation of RVT [6]. We use Ran-
dAugment [1], random cropping, horizontal flip, normal-
ization and cutout [2]. The cutout [2] is only used in CI-
FAR100 like FOSTER [8]. To alleviate the influence of
unbalanced datasets, following LUCIR [4], DER [10], and
Dytox [3], at the end of each task, we finetune our model
with the balanced datasets selected in the memory buffer to
alleviate the bias between the old categories and new cate-
gories. We choose to finetune our model with a learning rate
1e−4. In CIFAR100, For the 10 steps set, we finetune the
model for one epoch before 3 steps and 10 epochs for other
steps. For the 5 steps set, we finetune the model for one
epoch before 2 steps and 10 epochs for other steps. For the
20 steps set, we finetune the model for one epoch before 4
steps and 10 epochs for other steps. In ImageNet100/1000,
we finetune the model for 5 epochs before 3 steps and 10
epochs for other steps. During model training, the task-
specific tokens and stability classifier in the duplex classifier
are frozen to preserve the previous knowledge. Conversely,
the plastic classifier in the duplex classifier and the task-
general token are allowed to learn new knowledge and up-
date the general knowledge in the tasks, respectively. Dur-
ing finetuning, we fix the feature extractor including SABs
and GKAB. Corresponding to this, we open SKAB and du-
plex classifier to reduce the bias towards the new categories.
We fix the task-specific tokens to maintain specific knowl-
edge for previous tasks and set the task-general token train-
able for GKAB to update the general knowledge. The order
and sampler strategy are following Dytox [3]. Our batch
size is 256 to suit our GPUs.

To balance the training time and accuracy, we set batch
size 256 for two GPUs (RTX3090) on CIFAR100 and Ima-

GPUs Avg

2 75.83
4 75.61

Table 1. Performance on several GPUs in 10 steps on CIFAR100

geNet100, and 256 for four GPUs on ImageNet1000 to ac-
celerate training.

A.1.2 Memory Buffer Setting

Differing from CNN, Vision Transformers usually use adam
[5] optimizer and DistributedDataParallel instead of SGD
and DataParallel. So the previous work [3] has made
a mistake. The model selects N times anchors than the
memory buffer, in which N is the number of GPUS,
causing the accuracy of the paper much higher than true
performance(73.3%−→67.33% in 10 steps on CIFAR100).
So in erratum distributed, It [3] reports the true performance
and we compare our model with this performance. We solve
this bug to maintain a suitable memory buffer. We sus-
pend all but GPU0 and use GPU0 to select anchors using
the way in iCaRL [7] like other continual learning meth-
ods [3, 7, 9–11]. We store the anchors as a new file and
then push the anchors into other GPUs to guarantee that the
memory buffer is suitable. Our experiment in Table 1 shows
that our model can get similar performance in two or four
GPUs just need to change the batch-size like 128 in four
GPUs and 256 in two GPUs.

A.1.3 Computation FLOPs

Although FLOPs may not be a critical factor in incremental
learning tasks, we posit that they can serve as a useful metric
to gauge the superiority of a model. Thus, we have elected
to include a comparison of FLOPs with respect to previous
tasks in table 2. In Table 2, we have provided FLOPs of the
proposed DKT and the competitive DyTox global and DER
w/o P methods on CIFAR100 and ImageNet1000. We can
see that, as DKT only needs to increase the computation
of a task-specific token for each incremental task addition-

1



ally, instead of accumulatively computing the decoder like
DyTox, it is almost computation cost-free in learning new
tasks (less than 1% FLOPs increase after the final task). In-
stead, DyTox global and DER w/o P suffer about 30.8% and
899.7% FLOPs increase after the final learning task. This
result demonstrates the efficiency of our novel design us-
ing cross-attention and task-specific tokens in learning new
tasks.

CIFAR100 ImageNet1000
Methods FLOPs start FLOPs final FLOPs start FLOPs final
DER w/o P 0.372 3.716 1.827 18.265
DyTox global 0.606 0.793 2.010 2.552
Our DKT 0.615 0.618 2.064 2.066

Table 2. Computation complexity (i.e., FLOPs (G)) on CIFAR100
and ImageNet1000. FLOPs start/final represent the FLOPs be-
fore/after 10 incremental learning tasks, respectively.

References
[1] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V

Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 702–703, 2020. 1

[2] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 1

[3] Arthur Douillard, Alexandre Ramé, Guillaume Couairon,
and Matthieu Cord. Dytox: Transformers for continual
learning with dynamic token expansion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9285–9295, 2022. 1

[4] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via re-
balancing. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 831–839, 2019.
1

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[6] Xiaofeng Mao, Gege Qi, Yuefeng Chen, Xiaodan Li, Ranjie
Duan, Shaokai Ye, Yuan He, and Hui Xue. Towards robust
vision transformer. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
12042–12051, 2022. 1

[7] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classi-
fier and representation learning. In CVPR, pages 2001–2010,
2017. 1

[8] Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan
Zhan. Foster: Feature boosting and compression for class-
incremental learning. arXiv preprint arXiv:2204.04662,
2022. 1

[9] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-

cremental learning. arXiv preprint arXiv:1905.13260, 2019.
1

[10] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynam-
ically expandable representation for class incremental learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3014–3023,
2021. 1

[11] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-
Tao Xia. Maintaining discrimination and fairness in class
incremental learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13208–13217, 2020. 1


	. Appendix
	. Experiment details
	Implementation details
	Memory Buffer Setting
	Computation FLOPs



