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A. Appendix

A.1. Experiment details

A.1.1 Implementation details

We train our model on all datasets for 500 epochs. The op-
timizer is Adamw which sets weight-decay as 1e−6, decay-
rate as 0.1 and cosine learning rate as 1e−3, including 5
epochs of warmup like other vision transformer’s training.
Also, the backbone is modified from RVT [6]. we applied
the standard data augmentation of RVT [6]. We use Ran-
dAugment [1], random cropping, horizontal flip, normal-
ization and cutout [2]. The cutout [2] is only used in CI-
FAR100 like FOSTER [8]. To alleviate the influence of
unbalanced datasets, following LUCIR [4], DER [10], and
Dytox [3], at the end of each task, we finetune our model
with the balanced datasets selected in the memory buffer to
alleviate the bias between the old categories and new cate-
gories. We choose to finetune our model with a learning rate
1e−4. In CIFAR100, For the 10 steps set, we finetune the
model for one epoch before 3 steps and 10 epochs for other
steps. For the 5 steps set, we finetune the model for one
epoch before 2 steps and 10 epochs for other steps. For the
20 steps set, we finetune the model for one epoch before 4
steps and 10 epochs for other steps. In ImageNet100/1000,
we finetune the model for 5 epochs before 3 steps and 10
epochs for other steps. During model training, the task-
specific tokens and stability classifier in the duplex classifier
are frozen to preserve the previous knowledge. Conversely,
the plastic classifier in the duplex classifier and the task-
general token are allowed to learn new knowledge and up-
date the general knowledge in the tasks, respectively. Dur-
ing finetuning, we fix the feature extractor including SABs
and GKAB. Corresponding to this, we open SKAB and du-
plex classifier to reduce the bias towards the new categories.
We fix the task-specific tokens to maintain specific knowl-
edge for previous tasks and set the task-general token train-
able for GKAB to update the general knowledge. The order
and sampler strategy are following Dytox [3]. Our batch
size is 256 to suit our GPUs.

To balance the training time and accuracy, we set batch
size 256 for two GPUs (RTX3090) on CIFAR100 and Ima-

GPUs Avg

2 75.83
4 75.61

Table 1. Performance on several GPUs in 10 steps on CIFAR100

geNet100, and 256 for four GPUs on ImageNet1000 to ac-
celerate training.

A.1.2 Memory Buffer Setting

Differing from CNN, Vision Transformers usually use adam
[5] optimizer and DistributedDataParallel instead of SGD
and DataParallel. So the previous work [3] has made
a mistake. The model selects N times anchors than the
memory buffer, in which N is the number of GPUS,
causing the accuracy of the paper much higher than true
performance(73.3%−→67.33% in 10 steps on CIFAR100).
So in erratum distributed, It [3] reports the true performance
and we compare our model with this performance. We solve
this bug to maintain a suitable memory buffer. We sus-
pend all but GPU0 and use GPU0 to select anchors using
the way in iCaRL [7] like other continual learning meth-
ods [3, 7, 9–11]. We store the anchors as a new file and
then push the anchors into other GPUs to guarantee that the
memory buffer is suitable. Our experiment in Table 1 shows
that our model can get similar performance in two or four
GPUs just need to change the batch-size like 128 in four
GPUs and 256 in two GPUs.

A.1.3 Computation FLOPs

Although FLOPs may not be a critical factor in incremental
learning tasks, we posit that they can serve as a useful metric
to gauge the superiority of a model. Thus, we have elected
to include a comparison of FLOPs with respect to previous
tasks in table 2. In Table 2, we have provided FLOPs of the
proposed DKT and the competitive DyTox global and DER
w/o P methods on CIFAR100 and ImageNet1000. We can
see that, as DKT only needs to increase the computation
of a task-specific token for each incremental task addition-
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ally, instead of accumulatively computing the decoder like
DyTox, it is almost computation cost-free in learning new
tasks (less than 1% FLOPs increase after the final task). In-
stead, DyTox global and DER w/o P suffer about 30.8% and
899.7% FLOPs increase after the final learning task. This
result demonstrates the efficiency of our novel design us-
ing cross-attention and task-specific tokens in learning new
tasks.

CIFAR100 ImageNet1000
Methods FLOPs start FLOPs final FLOPs start FLOPs final
DER w/o P 0.372 3.716 1.827 18.265
DyTox global 0.606 0.793 2.010 2.552
Our DKT 0.615 0.618 2.064 2.066

Table 2. Computation complexity (i.e., FLOPs (G)) on CIFAR100
and ImageNet1000. FLOPs start/final represent the FLOPs be-
fore/after 10 incremental learning tasks, respectively.
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