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Abstract

In this supplementary material, we analyze more exper-
iment results of the proposed human motion prediction sys-
tem. First, we analyze its computational efficiency in sec-
tion 1. We then supplement its more detailed prediction per-
formances in section 2. In section 3, we further investigate
the effect of its multiple frequency representations with t-
SNE visualizations. In section 4, we evaluate its few-sample
prediction performances on different human activities.

1. Analysis for Computational Efficiency

To verify the applicability of our proposed human mo-
tion prediction system, we compare it with other meth-
ods in terms of their running time, FLOPs and MPJEP
performances in long-term prediction (1000ms) on H3.6M
dataset. As shown in Table 1, our method outperforms the
state-of-the-art MPJPE performance by a large margin with
a comparable computational cost. It indicates that we de-
velop a powerful baseline model for the real-time and pre-
cise human motion prediction, enjoying a wide prospect in
future real-world applications.

Table 1. Efficiency Comparisons between different human motion
prediction methods on their running time costs and MPJPEs.

Model Time Cost (ms) FLOPs (M) MPJPE (mm)
DMGNN [3] 91.1 8.8 137.2

MSR-GCN [1] 83.8 7.9 114.2
PGBIG [4] 49.3 4.7 110.3
SPGSN [2] 61.9 5.8 109.6

Ours 72.6 6.6 100.3

2. Analysis for More Prediction Comparisons

In the paper (Table 3), we report MPJPE results averaged
over all kinds of human motions at each future time step on
CMU Mocap dataset. In this appendix, we provide more
detailed prediction performance comparisons to verify the
effectiveness of our method. First, in Table 2, we supple-
ment detailed MPJPE performances of each kind of human
motion on CMU Mocap dataset. Then, in Table 3, we use
mean angle error (MAE) to evaluate the prediction perfor-
mance on the angle representation of H3.6M dataset. As
verified in these comparisons, our proposed human motion
prediction system outperforms baseline methods at all ac-
tions and all evaluation metrics, achieving state-of-the-art
short-term and long-term prediction performances. These
performance improvements on these common-used large-
scale datasets and evaluation metrics verify the effective-
ness of the proposed method, indicating that it develops a
strong baseline model for robust human motion prediction.

3. Analysis for Multiple Frequency Features

In this section, we further investigate the effectiveness of
the proposed decomposition-aggregation scheme in the fre-
quency representation learning task with qualitative analy-
sis. As shown in Figure 1, we first select a motion sample
from each motion category in the CMU Mocap dataset and
then plot the t-SNE visualization of their multiple frequency
representations augmented in the decomposition stage. As
presented in the paper (Section 4), FDU component de-
velops 15 filters to embed an input human motion into 15
feature spaces, and the No.1 filter focuses on extracting
its initial frequency representation. Figure 1 verifies that
FDU significantly enriches the spectral encoding of an input
body motion. Besides, multiple frequency representations
of a body motion encapsulate shared semantic similarities
to reflect their consistent motion categories. By factorizing



Table 2. Supplement to comparisons of short-term and long-term prediction on CMU Mocap dataset.
scenarios basketball basketball signal directing traffic jumping

millisecond 80ms 160ms 320ms 400ms 1000 80ms 160ms 320ms 400ms 1000 80ms 160ms 320ms 400ms 1000 80ms 160ms 320ms 400ms 1000
DMGNN [3] 15.6 28.7 59.0 73.1 138.6 5.0 9.3 20.2 26.2 52.0 10.2 20.9 41.6 52.3 111.2 32.0 54.3 96.7 119.9 224.6

MSR-GCN [1] 10.3 18.9 37.7 47.0 87.0 3.0 5.7 12.4 16.3 47.9 5.9 12.1 28.4 38.0 111.0 15.0 28.7 55.9 69.1 124.8
PGBIG [4] 9.5 17.5 35.3 44.2 84.1 2.7 4.9 10.8 14.6 50.2 4.8 9.8 23.6 32.3 102.3 13.9 27.8 55.8 69.0 125.6
SPGSN [2] 10.2 18.5 38.2 48.7 89.6 2.9 5.3 11.3 15.0 47.3 5.5 11.2 25.5 37.1 108.1 14.9 28.2 56.7 71.2 125.2

Ours 9.1 16.1 34.2 44.0 83.1 2.5 4.7 10.1 14.0 46.3 4.6 9.1 22.4 31.1 100.9 13.0 26.3 52.1 67.3 122.9
scenarios soccer walking wash window average

millisecond 80ms 160ms 320ms 400ms 1000ms 80ms 160ms 320ms 400ms 1000ms 80ms 160ms 320ms 400ms 1000ms 80ms 160ms 320ms 400ms 1000ms
DMGNN [3] 14.9 25.3 52.2 65.4 111.9 9.6 15.5 26.0 30.4 67.0 7.9 14.7 33.3 44.2 82.8 13.6 24.1 47.0 58.8 112.6

MSR-GCN [1] 10.9 19.5 37.1 46.4 99.3 6.3 10.3 17.6 21.1 39.7 5.5 11.1 25.1 32.5 71.3 8.1 15.2 30.6 38.6 83.0
PGBIG [4] 11.1 20.6 39.5 48.7 99.9 6.2 10.3 16.8 19.8 33.9 4.6 9.2 20.9 27.3 65.7 7.6 14.3 29.0 36.6 80.1
SPGSN [2] 10.9 19.0 35.1 45.2 99.5 6.3 10.2 16.3 20.2 34.8 4.9 9.4 21.5 28.4 65.1 8.3 14.8 28.6 37.0 77.8

Ours 10.6 19.0 34.6 43.1 97.4 6.2 10.0 16.0 18.8 31.2 4.5 9.3 20.1 25.3 64.1 6.4 13.9 27.9 36.0 75.4

Table 3. Comparisons of mean angle errors on H3.6M dataset at
80ms, 160ms, 320ms, 400ms, 560ms, and 1000ms.

millisecond 80ms 160ms 320ms 400ms 560ms 1000ms
DMGNN [3] 0.38 0.65 0.94 1.04 1.24 1.64

MSR-GCN [1] 0.35 0.61 0.98 1.11 1.31 1.67
PGBIG [4] 0.30 0.54 0.89 1.02 1.23 1.61
SPGSN [2] 0.31 0.52 0.86 1.01 1.18 1.60

Ours 0.27 0.48 0.81 0.96 1.01 1.52

Figure 1. The t-SNE visualization of augmented multi-view fre-
quency features on CMU Mocap dataset.

the frequency representation learning into a decomposition-
aggregation scheme, we collect richer frequency represen-
tations from the proposed FDU and FAU components for
robust human motion prediction.

4. Analysis for Few-sample Prediction
In the paper (Figure 4), we report few-sample predic-

tion performances averaged over all human motions on the
H3.6M dataset. Here, we supplement its detailed action-
specific results to investigate the few-sample prediction per-
formances on different kinds of human motions. As shown
in Figure 2, we first choose four activities (walking, smok-
ing, discussion, and posing) as examples and then provide
five configurations (10%, 30%, 50%, 70%, and 90%) for
few-sample training on each activity. We can see that our
proposed decomposition-aggregation scheme has a clear
advantages on extracting richer frequency representations
from few training samples for robust human motion pre-

Figure 2. Few-sample prediction performances on different kinds
of human motions.

diction. For example, when training with 10%-only sam-
ples, our system outperforms state-of-the-art methods by
large margins: 20% on walking, 25% on smoking, 21%
on discussion, and 19% on posing. These significant per-
formance gains on few-sample prediction suggest that by
enriching the spectral encoding of an input body motion,
the decomposition-aggregation scheme extracts richer fre-
quency features for robust motion prediction, making it less
prone to overfitting on limited motion samples.
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