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Size of B Method T200-B0-S10

200

ER [8] 8.79± 0.21
AGEM [5] 8.28± 0.15
iCaRL [7] 8.64± 0.78
FDR [2] 8.77± 0.82

DER++ [3] 11.16± 0.95
ERT [4] 10.85± 0.24
RM [1] 13.58± 1.07
Ours 14.45± 0.85

Table 1. Accuracy (%) of the C100-B0-S5, C100-B0-S10, C100-
B0-S20, and T200-B0-S10 settings.

1. More Comparison

We further evaluate our method the T200-B0-S10 setting
using the Tiny-ImageNet dataset. We set the size of the
memory buffer as 200. Results are shown in Tab. 1. Our
method achieves good performance again.

2. Anaylsis of Submanifold Pool

In our method, we constructed the submanifold pool be-
fore training. We first pre-define the dimension of constant
curvature spaces (CCSs). For simplicity, we then sequen-
tially sample CCSs for the submanifold pool. Take CCSs
with the dimension of 16 as an example, the first CCS uses
dimensions 1 − 16, and the second one uses dimensions
17− 32. Here, we evaluate the performance of our method
with different numbers of CCSs for the submanifold pool.
Concretely, we conduct the following settings.

(1) We sample CCSs with the dimension of 16. Thus,
there are 512

16 = 32 CCSs in the submanifold pool totally.
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(2) We sample CCSs with the dimension of 32. Thus,
there are 512

32 = 16 CCSs in the submanifold pool totally.
(3) We sample CCSs with the dimension of 64. Thus,

there are 512
64 = 8 CCSs in the submanifold pool totally.

(4) We sample CCSs with the dimension of128. Thus,
there are 512

128 = 4 CCSs in the submanifold pool totally.
(5) We sample CCSs with the dimension of 256. Thus,

there are 512
256 = 2 CCSs in the submanifold pool totally.

(6) We sample CCSs with the dimension of 128 and 256.
Thus, there are 512

128 + 512
256 = 6 CCSs in the submanifold

pool totally.
(7) We sample CCSs with the dimension of 64, 128, and

256. Thus, there are 512
64 + 512

128 + 512
256 = 14 CCSs in the

submanifold pool totally.
(8) We sample CCSs with the dimension of 32, 64, 128,

and 256. Thus, there are 512
32 + 512

64 + 512
128 +

512
256 = 30 CCSs

in the submanifold pool totally.
(9) We sample CCSs with the dimension of 16, 32, 64,

128, and 256. Thus, there are 512
16 + 512

32 + 512
64 + 512

128+
512
256 =

62 CCSs in the submanifold pool totally.
We conduct experiments using the CIFAR-100 dataset,

on the C100-B50-S5, C100-B50-S10, and C100-B40-S20
settings. Results are shown in Tab. 2. d′ denotes the used
dimensions of CSSs, and m means the number of CSSs in
the submanifold pool. We observe that diverse CCSs in the
submanifold pool lead to better performance.

3. Hyperparameter Analysis

In this section, we further evaluate the trade-off hyperpa-
rameters λ1 and λ2 for the angular-regularization loss and
the neighbor-robustness loss. Due to the page limitation,
we simply set λ1 = λ2 in the manuscript. Here, we con-
duct more experiments to evaluate λ1 and λ2 in the range of



Method C100-B50-S5 C100-B50-S10 C100-B40-S20
d′ = 16, m = 32 45.87 52.68 53.34
d′ = 32, m = 16 44.8 53.07 54.17
d′ = 64, m = 8 44.54 52.27 52.03
d′ = 128, m = 4 44.52 53.61 53.48
d′ = 256, m = 2 45.74 51.95 53.22

d′ = 128, 256, m = 6 46.77 53.5 55.10
d′ = 64, 128, 256, m = 14 47.26 53.86 54.75

d′ = 32, 64, 128, 256, m = 30 48.41 53.97 55.46
d′ = 16, 32, 64, 128, 256, m = 62 56.03 54.31 49.32

Table 2. Anaylsis of submanifold pool on the C100-B50-S5,
C100-B50-S10, and C100-B40-S20 settings.

λ1

λ2 0.001 0.01 0.1 1 10

0.001 51.8 52.37 52.6 51.76 47.51
0.01 52.53 52.87 52.70 53.20 51.34
0.1 52.72 53.41 52.70 53.50 53.28
1 55.19 54.64 56.03 54.34 50.59

10 52.23 53.25 53.01 52.90 52.16

Table 3. Accuracy (%) of the C100-B50-S5 setting.

λ1

λ2 0.001 0.01 0.1 1 10

0.001 49.51 50.42 50.44 50.86 48.46
0.01 51.4 51.43 50.16 50.81 48.74
0.1 53.07 51.82 51.94 52.47 52.09
1 53.74 53.89 54.31 54.29 51.99

10 50.95 51.53 51.38 51.30 51.37

Table 4. Accuracy (%) of the C100-B50-S10 setting.

[0.001, 0.01, 0.1, 1, 10] on the C100-B50-S10 setting. Re-
sults are shown in Tab. 3 and Tab. 4. The best performance
is achieved when λ1 = 1 and λ2 = 0.1.

4. Visualization
In this section, we visualize the geometric structures and

the mixed-curvature space in the continual learning process.
Some examples are shown in Fig. 1, Fig. 2, and Fig. 3. We
observe that our method can well preserve geometric struc-
tures of data, and prevent forgetting of old data.

5. Selected Submanifolds
In this section, we show selected submanifolds in the

C100-B50-S10 setting, including the number, curvature,
and dimension of selected submanifolds. As shown in Sec-
tion 5.1 of the manuscript, the dimensions of CCSs in the
submanifold pool are 16, 32, 64, 128, and 256, and there are
62 submanifolds totally. In the 11 steps of the C100-B50-
S10 setting (the first step is used to pre-train the model, and
there are 10 following steps), the mixed-curvature spaces in
our method are constructed in Tab. 5, where K+ denotes a
positive curvature and K− denotes a negative curvature. We
observe an interesting phenomenon. In the beginning, few

data is provided, and CCSs of low-dimension with positive
curvatures are selected. Then, when more and more data
comes, CCSs of high-dimension with negative curvatures
are selected. This may show that few data tends to have
cyclical structures, while more data tends to have complex
hierarchical structures.

6. Hyperparameter Analysis

We conduct experiments to further evaluate the proposed
two loss functions that alleviates catastrophic forgetting by
preserving geometric structures. They have two trade-off
hyperparameters that need to be tuned: λ1 for the angular-
regularization loss and λ2 for the neighbor-robustness loss.
In implementation, we set λ1 = λ2 and tune them in the
range of [0.001, 0.01, 0.1, 1, 10]. We conduct the experi-
ment on the CIFAR-100 dataset, and report the mean of ac-
curacies of all data, old data, and new data over all steps in
the data stream. Results are shown in Tab. 6. We observe
that with the increase of λ1 and λ2, the accuracy of total
data first increases and then decreases, and a good balance
is achieved when λ1 and λ2 are set around 1. Larger λ1 and
λ2 lead to higher accuracy on the old data, while they may
decrease the performance of new data.

We compare the scheme of preserving geometric struc-
tures with conventional used regularization schemes, i.e.,
preserving the representation unchanged [6,9]. In doing so,
we replace the two geometric structure preserving loss func-
tions with a representation preserving loss function. We ap-
ply a trade-off hyperparameter λ to the loss function and
tune λ to achieve the best performance. Experimental re-
sults in Tab. 7 shows the effectiveness of the proposed two
geometric structure preserving loss functions.
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(a) Geometric structure of the first task. (b) Geometric structure of the second task. (c) Geometric structure of the third task.

Figure 1. An example of structures of data in the CIFAR-100 dataset.

(a) Geometric structure of the first task. (b) Geometric structure of the second task. (c) Geometric structure of the third task.

Figure 2. An example of structures of data in the CIFAR-100 dataset.

(a) Geometric structure of the first task. (b) Geometric structure of the second task. (c) Geometric structure of the third task.

Figure 3. An example of structures of data in the CIFAR-100 dataset.

Step Selected constant curvature spaces
Step 1 30× C16

K+

Step 2 31× C16
K+ , 1× C16

K− , 3× C32
K−

Step 3 31× C16
K+ , 1× C16

K− , 1× C32
K+ , 7× C32

K−

Step 4 31× C16
K+ , 1× C16

K− , 1× C32
K+ , 9× C32

K−

Step 5 31× C16
K+ , 1× C16

K− , 1× C32
K+ , 9× C32

K− , 2× C64
K− , 1× C128

K+

Step 6 31× C16
K+ , 1× C16

K− , 1× C32
K+ , 9× C32

K− , 2× C64
K− , 1× C128

K+ , 2× C256
K+

Step 7 31× C16
K+ , 1× C16

K− , 1× C32
K+ , 9× C32

K− , 1× C64
K+ , 2× C64

K− , 1× C128
K+ , 2× C256

K+

Step 8 31× C16
K+ , 1× C16

K− , 2× C32
K+ , 9× C32

K− , 1× C64
K+ , 3× C64

K− , 1× C128
K+ , 2× C256

K+

Step 9 31× C16
K+ , 1× C16

K− , 2× C32
K+ , 10× C32

K− , 1× C64
K+ , 3× C64

K− , 1× C128
K+ , 2× C256

K+

Step 10 31× C16
K+ , 1× C16

K− , 2× C32
K+ , 10× C32

K− , 1× C64
K+ , 4× C64

K− , 1× C128
K+ , 2× C256

K+

Step 11 31× C16
K+ , 1× C16

K− , 2× C32
K+ , 10× C32

K− , 1× C64
K+ , 4× C64

K− , 1× C128
K+ , 2× C256

K+

Table 5. Selected CCSs of 11 steps in the C100-B50-S10 setting. 30× C16
K+ means 30 8-dimension CCS with positive curvatures.



Method
C100-B50-S5 C100-B50-S10 C100-B40-S20

Total acc Old acc New acc Total acc Old acc New acc Total acc Old acc New acc
λ1 = λ2 = 0.001 61.35 62.92 50.70 60.81 61.26 55.18 58.62 58.20 64.22
λ1 = λ2 = 0.01 61.52 63.45 49.02 61.08 61.68 53.54 59.22 59.05 63.20
λ1 = λ2 = 0.1 62.04 64.08 45.98 62.92 63.71 51.88 60.44 60.45 61.30
λ1 = λ2 = 1 63.18 66.03 44.06 64.01 65.82 39.78 59.75 61.08 35.25
λ1 = λ2 = 10 61.56 65.56 35.90 63.43 66.10 28.64 58.66 60.24 27.73

Table 6. Hyperparameter analysis (λ1 and λ2) of the proposed two loss functions. ‘Total acc’, ‘Old acc’, and ‘New acc’ denote the
accuracies of all data, old data, and new data, respectively. Results are obtained by averaging accuracies of all steps in the data stream.

Method C100-B50-S5 C100-B50-S10 C100-B40-S20
PR 53.87 52.86 47.63

PGS 56.03 54.31 49.32

Table 7. Comparisons between loss functions for preserving geo-
metric structures (PGS) and preserving representation (PR).
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