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A. Summary of Mathematical Symbols

G the generator in our FCGAN.

G(-): the generated sample from G.

D: the discriminator in our FCGAN.

C: the set of all conditions.

C': i-th condition in C, which can be a scalar, matrix or
others.

E’: encoder that extracts features from the (predicted)
dose map for i-th condition, which can be Identity.

m: the miss-indicator of all conditions (vector).

m’: the miss-indicator of i-th condition (scalar).

Y: the 3D dose map for one patient; only used in deriva-
tion.

Y;: the value of j-th voxel (scalar) in dose map Y.

Y;: the 3D dose map for i-th patient.

Y;: predicted 3D dose map for i-th patient.

M;: A binary matrix with the same dimension as Y; only
the voxel indexes with dose values in #-th bin are 1; only
used in derivation.

M: A binary matrix with the same dimension as Y; voxel
indexes in the target ROI are 1; only used in derivation.

M;: the value of j-th voxel in mask M. M; = 1 if j-th
voxel is in the ROI, otherwise M; = 0.

field beam plate

Figure 9. Field beam plate (single angle) illustration. We assume
that MLC design ideally would limit the X-ray within PTV/source
sector. Multi-leaf collimator (MLC) is a beam-limiting device fil-
tering X-rays delivered to the patient.

M?: A binary matrix with the same dimension as Y, in
which voxel indexes of the s-th ROI are 1.

M;: A binary matrix with the same dimension as Y;, in
which voxel indexes of the s-th ROI are 1 for i-th patient.

B. Data Preprocessing

We extract geometry information from the RT PLAN
data with DICOM lookup '. For example, the angle list
of the beam-static example (upper) in Figure 5 is [22,
56, 111, 152, 180, 335]. We use the OpenCV
function cv2 . 1line [3] to create the angle-plate (as Figure
5c) originating at isocenter. The illustration of creat-
ing the beam-plate is shown in Figure 9. The linear accel-
erator which generates beams has a consistent source to
isocenter distance (SID) of 1000 mm. We can create
the field beam plate (orange shadow in Figure 9) with one
beam angle. The overall beam-plate (as in Figure 5d) is the
average of field plates of all angles. Note that we only need
the beam angles and PTV mask to create the angle/beam
plates.

The region closer to the i socenter usually gets higher
dose levels. To let the model focus on the important region,

https://dicom.innolitics.com/ciods



we centralize the isocenter as the voxel center for in-
put with two ranges in our experiments 96 mm x 224 mm
x 224 mm and 144 mm x 256 mm x 256 mm. The axial
range is smaller as the treatment beam passes orthogonal to
the axial direction. Our major experiments are conducted
with 96 mm x 224 mm X 224 mm with data size 32 mm
x 192 mm X 192 mm. To separate the RT planning predic-
tion from the dose scale (clinical-dependent) and remove
potential clinical bias, we normalize the reference dose to
0-5 during training.

Seven organs at risk (OARs) have been included in the
multiple channel input: bronchial, chest wall and rib, esoph-
agus, heart, proximal bronchial, spinal cord, and lung. For
those patients missing a particular organ mask, we follow
[7] to impute the mask as zero volume.

C. Data Augmentation and Its Ablation Study

We apply data augmentation for all experiments in the
main texts. We use the Rotation, RandomResizedCrop,
and Flip for training, as shown in Figure 10. Those three
operations are independent, and multiple input channels use
the same operations for one patient, which avoids missing
matches across multi-channel.

Rotation: The volume is rotated between —30° to 30°
with axial as the axis. This operation probability is 0.5.

Flip: The volume is flipped in the sagittal direction. The
probability of this operation is 0.5.

Random Resized Crop (RRC): The extended volume
with size D x H xW is randomly cropped with Shape 1 (i.e.,
- -Dx To- H x r3- W) resize to Shape 2 (D x H x W) then
central cropped to Shape 3 (i.e.,d X h X w ). The probability
of this operation is 0.5. When the RRC is not executed, the
volume is directly central cropped to Shape 3.

In majority of our experiments, we apply size d X b X w
as 32 x 192 x 192, with physical range 96 mm x 225 mm
x 225 mm. The corresponding D x H x W and DxHxW
is 48 x 256 x 256 and 40 x 224 x 224, respectively.

In the ablation study (Table 9), we have size d X h X w as
48 x 128 x 128, with physical range 144 mm x 256 mm x
256 mm. The corresponding D x H x W and DxHxW
is 60 x 150 x 150 and 54 x 139 x 139, respectively.

We conduct ablation experiments to validate the effec-
tiveness of data augmentation, as in Table 6. Using our data
augmentation, all the metrics have been improved.

Models | SDE (J) DDE(]) MAE(]) CEL ()
wloaug. | 6.29 1.73 3.03 0.10
w/aug. | 5.80 1.48 2.64 0.05

Table 6. Experiments comparing with and without data augmenta-
tion using the FCGAN.

D. Network Structure

One of our generator backbone DoseNet in FCGAN
is shown in Figure 11. The image-level conditions (CT,
PTV/OAR masks, and angle/beam plates) are fed as multi-
channel input. The scalar condition (i.e., mode) and miss-
mask are repeated to % x h x w. Together with ran-
dom noise, scalar condition, and the miss-mask information
form the gate volumes (e.g., orange in Figure 11), which
have different sizes and have been added to multiple lay-
ers in the model. Another backbone we used in FCGAN
is Probabilistic-UNet (PUNet) [6], which follows a similar
way as DoseNet, and its probabilistic mechanism can be
found in [6].

The discriminator D and encoder E use the same struc-
ture and relatively simpler than GG. The structure contains
five convolutional layers with the channel size [32, 64,
128, 256, 256]. After global adaptive average pool-
ing, there is one fully-connected layer to convert features to
class probabilities.

E. Supplements of SDV Loss

Here, we provide supplements about the derivation of
shift-dose-volume (SDV) loss introduced in Sec. 3.3.2.

Definition 1. The shift-dose-volume loss L', of each
bin [Dy, D+ ) is the absolute error £(-) of all voxels that
contributed to f (Dy) multiply the bin width w, i.e., expected
error of f(Dy) from voxel perspective. The Lsq, of each
ROl is the sum of each bin L', in its DVH.

Given a ROI with mask M, its L4, can be computed as:
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2§ € M denotes j-th pixel in M equals to 1 here.
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Figure 11. The network structure of DRUNet in our FCGAN framework (e.g., G in Figure 3). The lower part illustrates how to integrate
the random noise, mode condition, and miss-mask into the network.
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where Y is predicted dose maps, j is the element index for
dose map and mask, i.e., M; and Y} are j-th voxel in M and
Y respectively, and e(Y ©M) is defined as ), (Y;—Y;) M;.

Note that here we use: ||[A ©@M||; = % when M is a

binary matrix (mask), and A is any matrix has the same size
with M.

Eq. 12 is used for derivation and only for one patient
and single ROI. When consider NV patients with .S ROIs, we
have Eq. 10 in the main text, and as below:
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Next, we provide justification of properties of L4, men-
tioned in Sec. 3.3.2.

Property 1: Higher dose voxels contribute more to both
DVH computation and our SDV loss.

According to the definition of dose-volume histogram
(DVH) for a region of interest (ROI) masked by M:

2. 1(Y; — D) M;
B Zj Mj

The sum of fractional volume (y-axis in DVH) f(D;) of
all T bins is:
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The count of Y; in F(D) is [%4], where w = Dy /T
is the bin width. Thus, the higher the dose value Y}, the
more count in DVH. Note that the bin width w should be
multiplied to f(D;) to calculate the (expected) error or loss.

According to the definition of our SDV loss (e.g., Eq.
12), the dose map Y serves as a weighted mask when com-
puting the voxel-wise errors ||(Y — Y) ® M]||;. Thus,
higher-dose voxels have higher weights in L4, calculation.
To sum up, we have justified Property 1.

Property 2: Optimal L g, leads to an exact match of 3D
dose maps in its ROI, while zero (i.e., optimal) DVH gaps
theoretically can come from sub-optimal spatial mismatch.

We use an example to justify this property. As shown in
Figure 12, two voxels with two different dose values Y; and
Y; belong to the same ROL If their prediction Y; and YJ is
switched compare with the reference values, i.e.:

{-th bin mask M, |

t-th bin mask M, :
1 1

1 1
ROI mask M ROI mask M

(a) reference (b) prediction

Figure 12. Sub-optimal spatial dose pair with zero DVHs gap.

Y, =YY, =Y, (16)

according to Eq. 15, the predicted and referenced DVHs
would be exactly the same for Y; and Y}, while spatial error
exists. According to our Ly, (i.e., Eq. 12 or Eq. 13), loss
exists in those two voxels.

Contrastively, Lsq, = 0 if and only if the reference and

predicted doses exactly match voxel-wise with the ROI. So,
there is no spatial mismatch. This demonstrates the Prop-
erty 2.
Summary. SDV loss is strictly derived from the widely-
used dose-volume histogram, which enables spatially-
unbiased deep learning optimization and evaluation moti-
vated by the clinical interest.

F. Dataset Details and Discussion

The demographics of the two datasets are shown in Table
7. D1IWA denotes Dataset 1 with the angle configuration
available, which is from REQUITE [9] 3. D2NA denotes
Dataset 2 with no angle configuration, which comes from
our collaborated clinical site. We removed non-coplanar
plans due to their limited numbers.

It is noteworthy that RT planning data for research use
is challenging. Our study is conducted on larger-scale data
resources with more patients compared to previous stud-
ies, e.g., 1149 patients (ours) vs. 151 patients [4] vs. 141
patients [5] vs. 129 patients [2] vs. 340 patients [, 7].
Aside from the availability of angle configuration, DIWA
and D2NA have significantly discrepant populations, e.g.,
location, sex, smoking history, and tumor stage. Further-
more, DIWA is collected from multiple countries, which
is heterogeneous in both population and planning mode.
Thus, as shown in Table 3, the performance has dramati-
cally dropped when a model is trained on one set and tested
on another. Especially when trained on D2NA and tested on
D1WA, the model 1) can not take advantage of the available

3The REQUITE lung dataset has been processed and filtered by Big
Data Office of Siemens Healthineers. Some cases that can not been pro-
cessed with rt tool https://github.com/qurit/rt-utils are
not included in this study.



angle condition of D1 WA since the training has no angles,
and 2) has to deal with more heterogeneous testing (i.e., on
D1WA) while trained on a relatively homogeneous popula-
tion (D2NA).

Note for REQUITE data: We thank all the contribu-
tors to the REQUITE project, including the patients, clini-
cians and nurses. The core REQUITE consortium consists
of David Azria, Erik Briers, Jenny Chang-Claude, Alison
M. Dunning, Rebecca M. Elliott, Corinne Faivre-Finn, Sara
Gutiérrez-Enriquez, Kerstie Johnson, Zoe Lingard, Tiziana
Rancati, Tim Rattay, Barry S. Rosenstein, Dirk De Ruyss-
cher, Petra Seibold, Elena Sperk, R. Paul Symonds, Hilary
Stobart, Christopher Talbot, Ana Vega, Liv Veldeman, Tim
Ward, Adam Webb and Catharine M.L. West.

REQUITE received funding from the European Union’s
Seventh Framework Program for research, technological
development, and demonstration under grant agreement no.
601826. Funding for the five year REQUITE project ended
on 30th September 2018. REQUITE does not benefit finan-
cially from supplying data and/or samples to researchers but
does make a charge to cover its costs and support continued
maintenance of the database and biobank beyond the ending
of the funding period. To facilitate this continued access to
researchers, the REQUITE Steering Committee approved a
tiered cost recovery model for access to data and/ or sam-
ples. Contact REQUITE (requite @manchester.ac.uk) for
more information on pricing. All authors had access to all
the data reported in the study. The senior authors had full
access to all the data in the study and had the final respon-
sibility for the decision to submit for publication.

G. Discussion on Metrics

We have included four quantitative metrics (defined in
Sec. 4.2.3) and qualitative results to evaluate the effective-
ness of our method.

Mean absolute error (MAE) evaluates the overall
match between the predicted and referenced maps. One
drawback of MAE is that two clinically acceptable dose
maps may have large MAE since the radiotherapy plan qual-
ity is in fact subjective. It also explains that some baseline
models predict smoother Gaussian-like distribution of dose
and even have a better MAE in some of our experiments
(e.g., Table 2).

Compared with MAE, shift-DV error (SDE) and
discrete-DVH error (DDE) focus on the match between
the region of interests (i.e., PTV and OARs) in terms of
DVH. The difference between DDE and SDE is that the
former incorporates some discrete points and statistics of a
DVH, and SDE measures error more comprehensively con-
sidering all bins.

Cross entropy loss (CEL) measures the discrepancy be-
tween the predicted dose mode and the referenced planning
mode. Since the pretrained model for classifying is trained

on real dose maps so that unrealistic doses will not have
an accurate category matching, CEL can measure how re-
alistic the predicted dose is to some degree. Ideally, if the
pretrained model has an infinite capacity and is trained with
infinite samples, no overfitting could exist in dose predic-
tion so that CEL would be unbiased. However, overfitting
can exist due to the limited availability of training data in
radiotherapy planning. As disclosed in Sec. 4.2.3, the CEL
metric can be somewhat biased but still helpful in evaluating
the model in terms of mode match and generating realistic
doses.

H. Additional Ablation Experiments

We also show more model comparison and qualitative
results (e.g., Table 8, Figure 13) to support that our model
generates doses that have better mode matches and are more
realistic. Since no angle is specified here and due to the sub-
jective nature of RT planning, both our predicted dose and
reference dose can be considered acceptable plans even if
the angles are slightly different. To specifically validate the
adversarial training, we provide another ablation study by
only removing the adversarial loss; the prediction becomes
blurry (Fig. 14c), and the reconstructed error also increased
(i.e., MAE from 2.64 to 2.70).

We also include another ROI strategy (larger region 144
mm X 256 mm x 256 mm, with voxel resolution 3 mm
X 2 mm X 2 mm corresponding to axial/sagittal/coronal
planes) to validate the robustness of our model, as in Ta-
ble 9. Our model FCGAN mechanism, L,,., and Lgg,
achieve improvements independently in this different re-
gion/resolution, e.g., SDE has been reduced from 7.64 to
6.34 by FCGAN mechanism, and further reduced 9% by
Lsgy, 5% by L., ., respectively. Compared with Table 1 and
9, our method improves MAE more in the context of more
focused (i.e., higher dose) regions with higher resolutions.
It is reasonable since less interesting locations with lower
doses in larger regions are usually easy to predict for all
methods, which can reduce the percentage of our improve-
ments.

In brief, our model is robust to different re-
gion/resolution, and have the potential to be adapted to dif-
ferent purposes.

I. Supplements of MC Loss

Clarification. We term Condition ¢ as target condition, and
Condition j as the support condition in Eq. 4. To simplify,
Eq. 4 is only for one subject. The target condition ¢ can be
missing in training, e.g., plates condition in RT dose pre-
diction, and the support condition j is from other observed
conditions. G(-|m® = 0,-) is the generated sample when
Condition ¢ is missing, while Condition ¢ for G(-) can be
either given or missing.



(a) DRUNet (b) CUNet (e) reference

Figure 13. More qualitative results. Our model have realistic prediction, while baselines have been over-fitted to Gaussian-like distributions
(make the following steps e.g., fluence map prediction harder). Since no angles has been specified during prediction, it is reasonable that
the angles expanded slightly different between prediction and reference.



Characteristics Values D2NA DIWA
Sex Female/Male 52% 148% 30% / 70%
Age at enrolment Median (range), years 74 (31-97) 69 (39-91)
BMI F: Mean (standard deviation) 27.4 (7.6) 25.8 (6.2)

M: Mean (standard deviation) 27.2 (6.1) 26.6 (4.8)
Smoking status Current 21.4% 40.3%

Former 72.2% 54.9%

Never 6.4% 4.8%
Family lung cancer history positive percentage - 18%
Tumor histology Squamous 36% 33%

Adenocarcinoma 38% 37%

small cell 2% 4%

others 24% 26%
Clinical tumor size stage 0 1% 2%

la, 1b 65% 34%

2a, 2b 26% 26%

3or4 9% 36%
Tumor overall stage I-11 85% 44%

I, IV 15% 56%

Table 7. More detailed information about the two datasets (D2NA and D1WA).

Models SDE(]) DDE(]) MAE(]) CEL ()
UNet [8] 6.20 1.56 1.47 2.55
CUNet [7] 6.10 1.62 1.46 2.30
PUNet [6] 5.67 1.61 1.40 251
SwinUnetr [10] | 6.34 1.61 1.45 2.61
DRUNet (ours) | 5.74 1.55 1.40 2.53
FCGAN™ (ours) | 4.71 1.47 1.49 0.03

Table 8. Experimental results on D2NA dataset with more base-
lines. FCGAN™ denotes no angle condition can be used.

Models SDE () DDE(]) MAE() CEL)

DRUNet 7.64 3.58 233 1.528
FCGAN(—? 6.34 1.66 2.05 0.013
FCGAN(V | 579 1.46 2.06 0.033

FCGAN 5.51 1.39 2.05 0.008

Table 9. Experiments on voxel resolution 3 mm X 2 mm X 2 mm
of DIWA. Ablations on majority resolution. FCGAN(~? has no
Lsgy and 00 Ly,.. FCGANC™ has no L,e.

Justification. As mentioned in Sec. 3.2, the motivation
of MC loss is to measure how predictions are consistent
when one condition (from multiple conditions) is given ver-
sus missing. The consistency measurement is based on the

(b) ours (c) w/o GAN

(a) reference

Figure 14. Ablation of GAN idea. Our model with adversarial
training (b) generates more realistic samples. Without the adver-
sarial loss, the prediction is more blurry as (c).

observed conditions rather than the missing condition. Take
face synthesis as an example (two conditions: w/ or w/o
glasses as Condition j, sex as Condition %), the encoding
of gender condition should be consistent whether the glass
condition is given or missing, i.e., the sex prediction of a
man with glasses and a man without glasses should both be
male.

Summary. The MC loss is a regularization term and is
self-explainable. It contributes to a robust prediction in the
context of flexible multi-condition GAN, i.e., with potential
missingness of conditions.
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