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In this supplementary material, we elaborate on the loss

functions, implementation details, datasets, additional re-

sults on the comparisons with different methods, and more

results of free pose and expression editing on wild iden-

tities. For the video results, please refer to https://

yuegao.me/PECHead.

1. Loss Functions

All the following losses are accumulated on all T frames

and normalized by T . For brevity, the subscript t is omitted

in the equations.

Pixel-wise Loss Lp. The pixel-wise loss is defined as,

Lp = E[∥ x̂d − xd ∥1], (1)

where x̂d is the synthesized frame and the xd is the driving

frame.

Perceptual Loss Lv . We follow the same setting as de-

picted in FOMM [21], the perceptual loss is defined as,

Lv = E[
∑

i

∑

j

∥ VGGj(x̂
d
i )− VGGj(x

d
i ) ∥1], (2)

where i indicates that the frame is down-sampled by i times,

and j is the layer index of the VGG-Net [23].

Learned Landmarks Loss Lk. The learned landmarks

loss [26] is used to control the distance of the learned land-

marks and prevent the distance falling below a threshold,

Lk = E[
∑

z={s,d}

K∑

i=1

K∑

j=1

(max(0, η− ∥ kzi − kzj ∥2
2
)],

(3)

where η is a preset threshold, we set η = 0.1.

Equivariance Loss Le. The equivariance loss [21, 22] is

defined as,

Le = E[∥ E(T (xs), pd, ed)− T (E(xs, pd, ed)) ∥1], (4)

where T is the nonlinear random thin-plate spline (TPS)

transformation, xs is the source frame, pd and ed is the head

pose and expression of the driving frame xd.

Warping Loss Lw. The warping loss is designed to make

the warped source frame close to the driving frame. It is

defined as follows,

Lw = E[0.5× ∥ W(xs, ws→d
local )− xd ∥1 +

0.5× ∥ W(xs, ws→d
global)− xd ∥1].

(5)

GAN Loss LG,LD . We adopt the Hinge Loss [18] as the

adversarial loss [14], and two patch discriminators for dif-

ferent scales are used to achieve better performance [13],

LG = −E[D(x̂d)],

LD = E[max(0, 1−D(xd)) + max(0, 1 +D(x̂d))].
(6)

2. Implementation Details

2.1. Model Details

Our method contains four parts, the Face Shape Recon-

structor R, the Head Pose-Aware Keypoint Estimator E, the

Generator G, and the Multi-Scale Discriminator D. The

details of the model structures and sub-modules are shown

in Figure 1. The Spectral Normalization (SN) [16] is ap-

plied to two discriminators. A Squeeze and Excitation (SE)

block [12] is employed in the last layer of E for modeling

the correlation among different landmarks. The SE block is

also used in the motion estimators. Unlike FOMM [21] and

other existing methods [11, 22, 31], we do not estimate the

Jacobians. In our experiments, we observe that it is hard to

control the head pose with the Jacobians, the same observa-

tions are also reported by Wang et al. [26]. The Face Shape

Reconstructor R uses ResNet-50 [9] to predict coefficients,

and the Basel Face Model (BFM) [1, 8] to further estimate

the projected face landmarks.

2.2. Datasets Details

Four datasets, i.e., VoxCeleb2 [4], TalkingHead-

1KH [26], CelebV-HQ [32], and VFHQ [29], are used in

this paper.

VoxCeleb2. The VoxCeleb2 dataset contains 1M talking-

head videos captured from different celebrities. The amount
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Figure 1. The detailed architectures of components in our model.



of videos and identities of this dataset is huge, but the aver-

age quality of these videos is limited.

TalkingHead-1KH. The TalkingHead-1KH dataset is com-

posed of about 1,000 hours crowd sourcing videos. Com-

pared with VoxCeleb2, the video frames of TalkingHead-

1KH have higher quality and resolution.

CelebV-HQ. The CelebV-HQ provides more than 35K

video clips with diverse appearances, actions, and expres-

sions, involving more than 15K identities.

VFHQ. The VFHQ dataset is mainly constructed for

video face super-resolution, which contains over 16K high-

fidelity clips of diverse interview scenarios, providing the

highest frame quality among these datasets.

For TalkingHead-1KH and VFHQ, we follow the ap-

proaches used in [26, 29] to split the training and validation

sets respectively, and report the performance of our model

on the validation sets. For CelebV-HQ, we randomly se-

lect 500 videos for validation, as the official validation split

is not provided. For VoxCeleb2, we randomly sample 500

videos from the full validation set containing more than 19K

videos. The resolution of frames is resized to 256 × 256
for comparison with other methods, while the experiment

on editing wild identities uses the frames with resolution

512× 512.

2.3. Optimization

The codebase for all these experiments is built upon Py-

Torch [17]. We randomly sample T = 5 frames for both

source and driving sequences during training. The Recon-

structor R is separately trained with the same setting as de-

picted by Deng et al. [6] and the landmarks obtained by the

widely used framework [2] are used as the pseudo labels.

The AdamW [15] optimizer is adopted with β1 = 0.9 and

β2 = 0.999, and the OneCycle [24] learning rate policy

is used with the base learning rate 1 × 10−4 and the max-

imum learning rate 4 × 10−4. The batch size is 64 over

8×32G NVIDIA Tesla V100 GPUs, in which 8 frames will

be dispatched to each GPU. All these models are trained

with 100 epochs for a fair comparison. The loss wights are

λp = 10, λv = 10, λk = 1, λe = 10, λw = 5, and λG = 1.

2.4. Metrics

L1 distance (L1). To evaluate the reconstruction ability of

models, we compute the mean L1 distance, between the

synthesized and driving frames. The values of RGB chan-

nels are normalized to [0, 1].
Peak Signal-to-Noise Ratio (PSNR). The PSNR is used

to measure the image reconstruction quality. PSNR is the

ratio between the maximum possible power of a signal and

the power of corrupting noise that affects the fidelity of its

representation [28].

Multi-Scale Structural Similarity (MS-SSIM). SSIM

measures the structural similarity between two image

Table 1. The complexity comparison of the different methods.

Method MACs (G) Params. (M) Runtime (ms/frame)

FOMM [21] 56.36 59.79 15.73

MRAA [22] 61.01 66.00 17.92

OSFV [26] 521.85 125.30 140.04

TPSMM [31] 142.20 85.10 30.37

LIA [27] 88.31 45.10 26.73

DaGAN [11] 74.29 92.77 28.07

Face2Faceρ [30] 3.20 11.31 21.81

PECHead 357.10 161.09 71.07

patches. MS-SSIM is a multi-scale version of SSIM that

measures on multiple scales of the images. We only report

the MS-SSIM scores as it’s shown to be more correlated

with human perceptions.

Fŕechet Inception Distance (FID). The FID [10, 19]

is used to evaluate the photo-realism of the synthesized

frames.

Fŕechet Video Distance (FVD). We calculate the FVD

score [25] of generated sequences to reveal the video qual-

ity.

Average Keypoint Distance (AKD). The average keypoint

distance (AKD) [20,21] is adopted to measure the semantic

consistency. The facial landmark detector [2] is used to de-

tect landmarks of driving and synthesized images and then

the average distance between the corresponding landmarks

in two images is computed.

Cross-Identity Similarity (CSIM). The cross-identity sim-

ilarity (CSIM) [7, 21, 22, 26] is widely used to evaluate the

identity preservation for cross-identity video face reenact-

ment. Following the common settings, the ArcFace [5] is

used to extract the face embeddings of the source and driv-

ing images, and the cosine similarity is computed between

the two embeddings.

Average Rotation Distance (ARD). The average rotation

distance (ARD) [7] is used to measure the head pose preser-

vation. The camera parameters from 3D face reconstruc-

tion [6] are used to compute the Euler angles corresponding

to head poses in the driving and synthesized frames. Then,

the average l1-distance of the Euler angles across all frames

is determined, and we report these values in degrees. In the

frontalization task, the average rotation error (ARE) is used

to measure the Euler angle errors, where the ground truth is

the ideal frontal pose, with zero Euler angles.

Facial Action Unit Hamming Distance (AUH). The facial

action unit Hamming distance (AUH) [7] is used to measure

the expression preservation. We use the py-feat [3] tool-

box to extract the facial action units (AUs) from the driving

and synthesized images, and the AUH is computed as the

average Hamming distance between the AUs of the driving

and synthesized images.



Table 2. Quantitative results for the cross-identity reenactment.

Methods
VoxCeleb2 TalkingHead-1KH

CSIM↑ ARD↓ AUH↓ FVD↓ CSIM↑ ARD↓ AUH↓ FVD↓

FOMM [21] 0.716 1.74 0.172 226.5 0.682 5.44 0.221 240.3

MRAA [22] 0.677 2.19 0.143 254.2 0.564 2.11 0.093 243.4

OSFV [26] 0.772 3.02 0.164 234.4 0.845 2.98 0.151 224.4

TPSMM [31] 0.632 2.22 0.144 221.2 0.731 1.76 0.094 241.9

LIA [27] 0.775 3.35 0.146 268.1 0.708 2.20 0.115 233.8

DaGAN [11] 0.698 2.16 0.177 217.7 0.701 5.56 0.204 240.6

Face2Faceρ [30] 0.779 2.75 0.125 260.2 0.802 1.35 0.111 230.4

PECHead 0.797 1.59 0.134 210.0 0.899 0.79 0.085 216.7

3. Additional Results

3.1. Complexity

Table 1 shows the complexities of our method and other

state-of-the-art methods. The number of MACs and param-

eters are calculated under the frame resolution of 256×256,

and we utilize the THOP [33] toolbox to calculate them

with pure PyTorch [17] implementations and no further op-

timization. The runtime is measured on a single NVIDIA

RTX 2080Ti GPU. Compared with the real-time oriented

method Face2Faceρ [30] and early works, e.g., FOMM [21]

and MRAA [22], our method has higher complexity, but

significantly better performance. The OSFV [26] utilizes

3D convolution networks to extract the 3D learned land-

marks and estimate the motion of the 3D learned landmarks,

leading to a larger complexity, but the performance is infe-

rior to our model. Among all these methods, our method has

the best quantitative and qualitative performance but with

acceptable complexity.

3.2. Video Face Reconstruction

Additional results of the video face reconstruction are

shown in Figure 2. The top two rows are from the

TalkingHead-1KH [26] dataset, the third and fourth rows

are from the CelebV-HQ [32] dataset, and the last six rows

are from the VFHQ [29] dataset.

3.3. Video Face Reenactment

The results of the video face reenactment are shown in

Figure 3. Table 2 shows the quantitative results of the

cross-identity reenactment. The top three rows are from

the TalkingHead-1KH [26] dataset, the fourth through sixth

rows are from the CelebV-HQ [32] dataset, and the last six

rows are from the VFHQ [29] dataset.

3.4. Pose and Expression Editing

The frontalization results are shown in Figure 4. The

expression editing results are shown in Figure 5, where

the models are required to transfer the target expression to

the source face. All the samples are from the VFHQ [29]

dataset.

3.5. Reenactment on Wild Identities

To validate the generalization ability, we present more

results of reenactment on wild identities, shown in Figure 6,

where the source identity images are downloaded from the

Internet, and the driving frames are from the VFHQ [29]

dataset.

4. Free Editing on Wild Identities

The proposed method PECHead can also be used for

free editing on wild identities. Additional results of pose

editing on wild identities are shown in Figure 7. The re-

sults of expression editing on wild identities are shown in

Figure 8.



Source Driving FOMM [21] MRAA [22] OSFV [26] TPSMM [31] LIA [27] DaGAN [11] Face2Faceρ [30] PECHead

Figure 2. Comparison of same-identity video reconstruction results obtained by the proposed method and other state-of-the-art approaches.



Source Driving FOMM [21] MRAA [22] OSFV [26] TPSMM [31] LIA [27] DaGAN [11] Face2Faceρ [30] PECHead

Figure 3. Comparison of cross-identity face reenactment results obtained by the proposed method and other approaches.
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Figure 4. Frontalization results of proposed method.
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Figure 5. Expression editing results of proposed method.



Source Driving FOMM [21] MRAA [22] OSFV [26] TPSMM [31] LIA [27] DaGAN [11] Face2Faceρ [30] PECHead

Figure 6. Comparison of cross-identity face reenactment on wild identities.



Input Yaw Yaw Pitch Pitch Roll Roll Field of view

Figure 7. Head pose free editing on wild identities.



Input Expressionless Eye closing Mouth closing/opening Smile Grin Laugh

Figure 8. Facial expression free editing on wild identities.
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