
Supplementary Materials of
SurfelNeRF: Neural Surfel Radiance Fields for Online Photorealistic

Reconstruction of Indoor Scenes

We show more visualizations and comparisons in the
supplementary and attached videos. Please watch the sup-
plementary videos for more results. We also provide imple-
mentation details and visualization results of ablation stud-
ies. In particular, this supplementary material provides:

• Additional qualitative results and comparisons, as
shown in attached videos.

• Implementation details about our proposed
rasterization-guided render scheme and network
architecture, as in Sec. 1.

• Additional ablations, including taking RGB images as
input only (without sensor depth), and the comparison
with our depth refinement module, as in Sec. 2.1.

• More qualitative results of ablation studies to validate
the effectiveness of our module and provide further
analyses, as in Sec. 2.2.

1. Implementation Details

1.1. Network Details

Image feature extractor. We follow [8] to use the same
modified MnasNet [4] pretrained from ImageNet as a 2D
CNN to extract surfel features from images. For each sur-
fel, we extract multi-scale image features from correspond-
ing pixels. The channel number of extracted image features
is 83. We then project extracted image features to surfel
features with channel number of 32 by an MLP.
GRU fusion network. We employ a one layer GRU net-
work to fuse the surfel features. Given features fmerget of
input surfels and features fcorrst−1 of corresponding global
surfels, the process of updating global surfel features with
GRU can be given as:

fcorrst = GRU(fmerget , fcorrst−1 ), (1)

where the detail is expresses by

zt = Mz([f
merge
t , fcorrst−1 ]),

rt = Mr([f
merge
t , fcorrst−1 ]),

f̃corrst = Mt([rt ∗ fcorrst−1 , fmerget ]),

fcorrst = (1− zt) ∗ fcorrst−1 + zt ∗ f̃corrst ,

(2)

where Mz , Mr and Mt both have one MLP layer followed
by a sigmoid, sidmoid and tanh activation function, respec-
tively. [·, ·] denotes the operation of concatenate.
Rendering module. We employ an MLP-like rendering
module, Render(xi, f

i(xi),d), to predict volume density
σi and radiance ci at each shading point xi with giving “in-
terpolated” surfel features f i(xi) and its view direction d.
Specifically, the details can be given as

σi = Fσ([f
i(xi), γ(xi)]),

ci = Sigmoid(Fr([f
i(xi), γ(d)])),

(3)

where Fσ(·) is a one layer MLP network with the ReLU ac-
tivation function. Fr(·) is an MLP network with four layers
and ReLU activation function, where the channel number
of all hidden layers is 256. γ(·) denotes the positional em-
bedding with maximum frequency of 5. xi is the position
of shading point. [·, ·] is the concatenation operation. The
“interpolated” surfel features f i(xi) are obtained based on
the intersection of ray and surfels as

f i(xi) =
ri − ∥xi − pi∥

ri
F(f i,d,ni, wi), (4)

where pi, f i, ni, ri and wi indicate the position, features,
normal, radius and weight of surfels si respectively. The
function F is a MLP-like network, which is given as

F(f i,d,ni, wi) =

Ff ([f
i, γ(d), γ(wi), γ(ni), γ(d− n)]),

(5)

where Ff is a two layer MLP network with ReLU activation
function and the channel number of hidden layers is 256.
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Methods PSNR↑ SSIM↑ LPIPS ↓ Time ↓
Instant-NGP [1] 23.23 0.714 0.459 0.03s

ADOP [2] 25.01 0.807 0.272 1s
NeRFingMVS [6] 26.37 0.903 0.245 -

IBRNet [5] 25.14 0.871 0.266 -
NeRFusion [8] 26.49 0.915 0.209 38s
PointNeRF [7] 28.99 0.829 0.324 30s

SurfelNeRF 29.58 0.919 0.215 0.2s
SurfelNeRF (MVS) 29.74 0.920 0.211 0.2s

Table 1. Quantitative comparisons with SOTAs on the ScanNet
dataset with per-scene optimization. SurfelNeRF (MVS) indicates
taking RGB input with estimated depth via the MVS depth esti-
mator. Time↓ indicate average time to render an image.

Methods PSNR↑ SSIM↑ LPIPS ↓
IBRNet [5] 21.19 0.786 0.358

NeRFusion [8] 22.99 0.838 0.335
PointNeRF [7] 20.47 0.642 0.544

SurfelNeRF 23.82 0.845 0.327
SurfelNeRF (MVS) 24.29 0.871 0.324

Table 2. Quantitative comparisons with SOTAs on the ScanNet
dataset with no per-scene optimization. SurfelNeRF (MVS) indi-
cates taking RGB input with estimated depth via the MVS depth
estimator.

Overall, the function F takes features of surfels and cor-
responding geometry attributes of surfels and rays as in-
put, and outputs view-dependent surfel features. The view-
dependent surfel features are then weighted based on the
radius and the distance between intersections and centers of
surfels. The far the intersections are, the less they contribute
to the interpolated features.

2. Additional Results
In this section, we report and analyse quantitative and

qualitative results of additional ablation studies, and provide
additional qualitative comparison with recent SOTA meth-
ods.

2.1. Depth from MVS

We conduct an additional experiment that takes the RGB
input from sensors only and employ a off-the-shelf depth es-
timator [3] to obtain estimated MVS depth maps. We show
the quantitative results of this setting with direct network in-
ference and per-scene optimization in Table. 2 and Table. 1,
respectively. Our method with estimated depth, called Sur-
felNeRF(MVS), achieve comparable performance with us-
ing sensor depth and a depth refinement network. The

Fusion Scheme PSNR↑ SSIM↑ LPIPS ↓

Weighted Sum No per-scene 23.09 0.833 0.353
GRU optimization 23.82 0.845 0.327

Weighted Sum Per-scene 28.54 0.884 0.293
GRU optimization 29.58 0.919 0.215

Table 3. Ablation studies about fusion schemes in our SurfelNeRF.

slight improvement comes from the scenes where depth
captured from the sensor appears heavily incomplete and
noisy, where the off-the-shelf depth estimator [3] can pro-
duce better depth via multi-view stereo than raw sensor
measurements. To investigate the influence of depth quality,
we conduct an additional ablation study about depth refine-
ment network in the next section.

2.2. Additional Ablation Studies

Depth refinement network. We show the visualization
results of heavily incomplete scenes with different input
depth, including depth captured from sensors, refined from
the depth refinement network, and estimated by the off-the-
shelf depth estimator, as shown in Figure. 1. For the first
column that a novel view from scene0000 01 in ScanNet,
the sensor cannot capture the high-quality depth around the
thin bicycle wheels and the far away television. With the
help of RGB input or multi-view stereo techniques, the
depth refinement network and depth estimator can fill the
depth, which reconstruct surfels better and providing better
rendering results. Comparing with the depth refinement net-
work, the off-the-shelf depth estimator produce higher qual-
ity of estimated depth since it spends extra time to consider
the prior of multi-view stereo. Comparing the results with
different depth quality, this results shows that the higher
quality of depth the better photo-realistic rendering results
since depth quality decides the quality of reconstruction sur-
fels.
Fusion scheme. To investigate the effectiveness of the GRU
fusion module, we have conducted an ablation study and
shown quantitative results in the main paper. We recap the
results which is shown in Table. 3 and provide the qualita-
tive results in Figure. 2.

References
[1] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 2

[2] Darius Rückert, Linus Franke, and Marc Stamminger. Adop:
Approximate differentiable one-pixel point rendering. ACM
Transactions on Graphics (TOG), 41(4):1–14, 2022. 2

[3] Mohamed Sayed, John Gibson, Jamie Watson, Victor
Prisacariu, Michael Firman, and Clément Godard. Simplere-



(a) Sensor

(b) Depth
Refinement

Network

(c) Depth
Estimator

(d) GT

Figure 1. Comparison of different types of input depth on the per-scene optimization setting. Per-sceen optimizaiton would not change the
surfel position and number, so it can obtain the same conclusion when evaluating on the no per-scene optimization setting. The highlight
areas are indicated by red rectangles. It is obvious that depths captured from sensor may be incomplete and noisy, which affects the surfel
reconstruction resulting in sub-optimal rendering results.
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Figure 2. Comparison of different fusion schemes on the per-scene optimization setting. The highlight areas are indicated by red rectangles.
As can be seen in the figure, GRU can generate sharper and clearer details in novel view synthesis. GRU has the capability to adaptively
update features based on high-level features, which makes the fusion process more robust.
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