Uncurated Image-Text Datasets: Shedding Light on Demographic Bias Supplementary Material

Noa Garcia Yusuke Hirota Yankun Wu Yuta Nakashima
\{noagarcia@, y-hirota@is., yankun@is., n-yuta@\}ids.osaka-u.ac.jp

Osaka University

This document includes additional information to support the claims and experimental results in the main paper. The document is divided into the following sections:

- Section A: PHASE ρ statistics.
- Section B: YOLOv5 bias evaluaiton.
- Section C: CLIP evaluation results.
- Section D: Stable Diffusion results.

A. PHASE) statistics

Statistics about the number of annotations per attribute and class are reported in Table 3. For each class, we show the number of annotations as the raw annotations for the given class, the number of regions as the region-level annotations reached after annotator majority voting, and the number of images as the images with at least one regionlevel annotation with the class of interest.

B. YOLOv5 bias evaluation

Following findings about bias in pre-trained object detection models [1], we evaluate YOLOv5 in terms of skintone bias to check whether the use of this model can be a contributing factor to the representation discrepancies in PHASE $)$ annotations. We detect people in MSCOCO and compare accuracy per skin-tone using [2] annotations. Results are reported as follows: darker skin-tone recall is 0.49 , and lighter skin-tone recall is 0.55 . This shows that there is, indeed, a difference in performance according to skin-tone. However, we believe that it is not as big as to justify the representation gap that was found in the GCC dataset and the conclusions of our analysis still stand.

C. CLIP evaluation results

We report the results of the CLIP evaluation when balancing the number of samples per class and attribute. Table 4 compares CLIP performance in $\mathrm{R} @ k$ for $k=1,5,10$ when using all the samples in the validation set (Unbalanced), and when using the same number of samples per class and attribute (Balanced). For the balanced results, we

Table 1. CLIP embeddings evaluation on PHASE 9 validation set when detected person bounding boxes are occluded (black).

Attribute		Samples	R@1	R@5	R@10
age	baby \& child	350	12.9	23.4	29.1
	young	1,349	8.6	16.7	21.9
	adult	1,509	9.4	19.9	25.6
	senior	128	11.7	28.9	34.4
gender	man	1,950	12.0	24.3	30.6
	woman	1,617	8.1	15.3	20.0
skin-tone	lighter	3,166	8.5	17.5	22.9
	darker	318	11.6	25.2	29.6
ethnicity	Black	194	9.3	20.1	23.2
	East Asian	58	8.6	31.0	36.2
	Indian	90	11.1	28.9	35.6
	Latino	28	7.1	14.3	17.9
	Middle Eastern	16	12.5	12.5	25.0
	Southeast Asian	16	12.5	12.5	12.5
	White	2,231	8.7	17.4	23.0

use the number of samples in the smallest class in each attribute. Results are reported as mean and standard deviation over 100 runs with different random samples per class.

CLIP with occlusions To better understand what about the image leads to differing performances, we occlude the detected bounding boxes and repeat the evaluation process. We find that masking people bounding boxes makes CLIP's R@1 drop from about 30% to 8% for all the attributes, which means that relevant information is contained in person regions. Moreover, as shown in Table 1, the conclusions are maintained, e.g. recall for man is higher than for woman, which suggests that part of the bias is from the language.

D. Stable Diffusion results

Table 2 reports the statistics of Stable Diffusion's Safety Checker per attribute and class. We compare the percentage

Table 2. Classes in the validation set and classes labeled as unsafe by Stable Diffusion's Safety Checker.

Attribute	Validation set (\%)	Unsafe label (\%)
age		
baby	0.89	3.23
child	6.70	12.90
young	29.24	32.26
adult	32.70	32.26
senior	2.77	3.23
unsure	1.11	0.00
multiple	26.59	16.13
gender		
man	42.26	35.48
woman	35.04	51.61
unsure	0.98	0.00
multiple	21.72	12.90
skin-tone (binary)		
lighter	68.62	80.65
darker	6.89	3.23
unsure	5.66	3.23
multiple	18.83	12.90
ethnicity		
Black	4.20	3.23
East Asian	1.26	0.00
Indian	1.95	3.23
Latino	0.61	0.00
Middle Eastern	0.35	0.00
Southeast Asian	0.35	0.00
White	48.35	64.52
unsure	5.52	3.23
multiple	37.41	25.81

of samples per class in the image annotations, with the percentage of samples per class labeled as unsafe by the Safety Checker. It stands out that the class woman raises 51.61% of the unsafe labels whereas only accounts for 35.04% of the original images. Lighter skin-tone and White ethnicity also show big increases in the percentage of samples raised as unsafe, but differently from the woman class, both of them are the predominant class in their respective attributes.

References

[1] Benjamin Wilson, Judy Hoffman, and Jamie Morgenstern. Predictive inequity in object detection. arXiv preprint arXiv:1902.11097, 2019. 1
[2] Dora Zhao, Angelina Wang, and Olga Russakovsky. Understanding and evaluating racial biases in image captioning. In ICCV, 2021. 1

Table 3. Statistics of annotations in PHASE ρ per attribute and class. Annotations reports the raw number of annotations per class. Regions is the total number of region-level annotations after majority voting. Images accounts for the number of images with at least one regionlevel annotation with the class. Due to the inter-annotator agreement results, skin-tone region-level annotations are conducted for binary skin-tone only. For each attribute, the most common class is highlighted in bold and the unsure class in italics.

Attribute	Annotations	Regions	Images	Attribute	Annotations	Regions	Images
age	106, 041	35, 347	18, 889	skin-tone type	105, 801	-	-
baby	955	306	259	type 1	15,388	-	-
child	7, 829	2,578	1,569	type 2	49,821	-	-
young adult	40,398	13,313	8, 841	type 3	18, 083	-	-
adult	48,604	16,117	10,631	type 4	8,219	-	-
senior	4,632	1,375	1,152	type 5	5,771	-	-
unsure	3,623	653	525	type 6	4,570	-	-
gender	106, 041	35, 347	18,889	unsure	3,949	-	-
man	67,122	22,491	13,511	skin-tone (binary)	-	35,347	18, 889
woman	36,936	12,406	8,329	lighter	-	28,187	16,245
unsure	1,983	285	241	darker	-	5,572	3, 838
ethnicity	105, 801	35, 347	18, 889	unsure	-	922	730
Black	11,314	3, 664	2,657	activity	97, 021	35, 347	18, 889
East Asian	3, 957	953	707	caring	786	127	119
Indian	4,434	980	616	music	14,706	5, 012	3, 218
Latino	8, 826	1,309	1,168	eating	1,012	278	206
Middle Eastern	5,513	373	349	household	180	19	18
Southeast Asian	2,706	211	174	personal	291	39	33
White	63,253	22,098	13,698	posing	30,409	10,121	6,619
unsure	5,578	1,289	1,021	sports	19,933	6,725	3, 807
emotion	100, 248	35, 347	18, 889	transportation	811	224	181
happy	41,059	12,603	8,215	work	5, 043	1,433	891
sad	2, 221	331	308	sports	19,933	6,725	3, 807
fear	1,205	117	114	other	22,770	7,249	4,247
anger	2,391	377	346	unsure	1,080	164	149
neutral	47,367	16,646	10,473				
unsure	6,005	1,663	1,224				

Table 4. CLIP evaluation on PHASE ρ validation set. Results are reported as $\mathrm{R} @ k$ for $k=1,5,10$. Unbalanced denotes when all the samples are used, resulting in highly unbalanced classes. Balanced denotes when using the same number of samples per class and attribute.

Attribute	Class	Unbalanced				Balanced			
		Size	R@1	R@5	R@10	Size	R@1	R@5	R@10
age	baby \& child	350	44.0	65.4	74.0	128	44.0 ± 3.5	65.3 ± 3.4	73.9 ± 3.1
	young	1,349	30.4	51.3	60.9	128	29.8 ± 3.9	51.0 ± 4.5	60.8 ± 4.4
	adult	1,509	27.3	46.7	55.9	128	27.5 ± 3.8	46.5 ± 4.2	55.4 ± 4.1
	senior	128	44.5	64.1	71.1	128	44.5 ± 0.0	64.1 ± 0.0	71.1 ± 0.0
gender	man	1,950	32.0	53.2	63.1	1,617	32.1 ± 0.4	53.2 ± 0.5	63.1 ± 0.4
	woman	1,617	30.6	49.8	59.1	1,617	30.6 ± 0.0	49.8 ± 0.0	59.1 ± 0.0
skin-tone	lighter	3,166	30.2	50.6	59.9	318	30.1 ± 2.6	50.4 ± 2.8	60.1 ± 2.8
	darker	318	31.1	54.1	62.3	318	31.1 ± 0.0	54.1 ± 0.0	62.3 ± 0.0
ethnicity	Black	194	29.4	51.5	58.8	16	29.1 ± 11.5	49.9 ± 11.2	57.7 ± 11.4
	East Asian	58	34.8	56.9	63.8	16	33.5 ± 10.5	56.4 ± 10.5	64.2 ± 10.7
	Indian	90	34.4	61.1	68.9	16	34.4 ± 12.3	61.9 ± 11.8	69.5 ± 11.4
	Latino	28	21.4	39.3	50.0	16	21.4 ± 6.2	37.9 ± 8.2	48.6 ± 8.6
	Middle Eastern	16	31.3	62.5	75.0	16	31.3 ± 0.0	62.5 ± 0.0	75.0 ± 0.0
	Southeast Asian	16	31.3	37.5	56.3	16	31.3 ± 0.0	37.5 ± 0.0	56.3 ± 0.0
	White	2,231	30.6	50.6	59.5	16	31.2 ± 12.6	50.8 ± 12.3	59.3 ± 11.7

