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A. Experiment setups
In this section, we provide additional details of our exper-

iments.

Unsupervised object proposals. When pretraining on un-
curated datasets, acquiring ground truth object bounding
boxes using human annotations can be expensive. However,
automatically generating unsupervised region proposal is
well studied. We use Selective Search as the unsupervised
proposal generation method. Following ORL [10] we first
generate the proposals using selective search. Then we filter
the proposals with 96 pixels as the minimal scale, maximum
IOU of 0.5 and aspect ratio between 1/3 to 3. For every im-
age we generate maximum of 100 proposals and randomly
select any image as the object image.

OpenImages dataset. We use the full OpenImages dataset
which have bounding box annotations (⇠ 1.9 million im-
ages). We also use a subset proposed in [9]. This is a subset
created from the OpenImages dataset where each image has
at least 2 classes present and each class has at least 900
instances. This subset is a balanced subset of OpenImages
with an average of 12 object present in an image, making it
a good proxy for real-world multi-object images.

Object and Scene image augmentations. We find that
small objects are always detrimental to performance. There-
fore, when sampling object bounding boxes, we drop bound-
ing boxes with size width ⇥ height  56⇥ 56. Further,
when sampling objects for the Euclidean branch, if the size
of a bounding box width ⇥ height  256 ⇥ 256, we
slightly expand it to either 256 ⇥ 256 or the maximal size
allowed by the original image size. We also apply a small
jittering to the width and height to include different con-
texts around the objects. Next, we apply random cropping
and resizing with the same scale (0.2, 1.) as in MoCo [6].
When sampling objects for the hyperbolic branch, we do not
apply jittering and random cropping, but only filter the small
boxes and resize to  224⇥ 224. To crop the scene images,
we sample another 1 to 5 bounding boxes and merge with
the selected object bounding box.

Model details of pre-training. For the optimizer setups
and augmentation recipes, we follow the standard protocol
described in MoCo-v2 [2]. We find that a base learning rate
of 0.3 works better when pre-training on COCO and OpenIm-
age datasets as compared to 0.03. We adopt the linear learn-
ing rate scaling receipt that lr = 0.3 ⇥ BatchSize/256 [5]
and batch size of 128 by default on 4 NVIDIA p6000 gpus.
To ensure fair comparison, we also pre-train the baselines
with a learning rate of 0.3. We train our models on COCO
and the subset of OpenImage datasets for 200 epochs and
full OpenImage dataset for 75 epochs. We also note that cal-
culating hyperbolic loss itself takes nearly the same time as
a normal contrastive loss. The only overhead in pre-training
is one additional forward pass to get scene representations.
In our setting, MoCo takes 0.616 sec/iter while HCL takes
0.757 sec/iter. For the hyperparameters of our hyperbolic
objective, we use r = 4.5, � = 0.1, and " = 1e�5 as our
default setting.

B. Additional experimental results
B.1. Robustness under Corruption.

We calculate the mCE error as in Hendrycks et al. [7]. We
compare our HCL model trained on OpenImages and lineval
on ImageNet dataset with the baseline model without using
HCL loss. We see an improvement of 1.9 mCE over the base-
line model, demonstrating that our HCL model learns more
robust representations as compared to the vanilla MoCo.

B.2. Fine-grained class classification

Method Cars [8] DTD [3] Food [1]

HCL/Lhyp 31.92 68.46 58.66
HCL 32.02 68.19 58.79

Table 1. Fine grained classification results.

In Table 1 we show results on fine-grained classification
datasets. We can see that on fine-grained classification our
model provides little performance improvement. This could
be due to the fact that all classes in these datasets have very
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Figure 1. PCA visualization from randomly sampled images from
COCO validation set. The various colors denote distinct scenes,
and the denser dots signify a higher concentration of objects within
the area. The data strongly suggest that regions with a greater
number of objects generally exhibit higher magnitudes.

similar scene contexts, and hence the hyperbolic objective
does not help very much.

B.3. Visualization of the representation space:
To show that the norm of the scenes is larger the objects;

we randomly sample a few images with multiple objects
from the COCO validation set. For each scene, we compute
representations for its objects and regions and apply PCA
to obtain the visualization in the figure above. Each color
represents a different scene and the darker dots indicate more
objects in the region. It is clearly shown that regions with
more objects tend to have larger norms.

B.4. More ImageNet Examples
More visualization results on ImageNet are presented in

Figures 2 and 3.

C. Additional ablation studies
In this section, we provide more ablation experiments

on hyperbolic linear evaluation, model architecture, and the
radius of Poincare ball. All the models are trained on the
OpenImages dataset and evaluated on the ImageNet-100 (IN-
100) or ImageNet-1k (IN-1k) the top-1 accuracy reported.

Radius of the Poincare ball. In Table 2 we show results by
varying the radius of Poincaré ball. The hyperbolic objective
improves the performance over all the tested radius. We find
that a too small radius may lead to a smaller improvement
due to the stronger regularization.

Configuration of the encoder head. In our experiments,
the Euclidean and hyperbolic branches share the weights

c 1 0.5 0.1 0.05 0.01

IN-1k Acc. 58.08 58.31 58.29 58.51 58.49

Table 2. Results by varying the radius r of Poincaré ball. c = 1
r2
.

Head � IN-100 Acc.

N/A 0 77.36

shared 0.1 79.08
0.5 0

splitted 0.1 77.88
0.5 77.58

Table 3. Different configurations of head in the the Euclidean and
hyperbolic branches.

SGD Adam
lr IN-100 lr IN-100

0.1 63.82 0.001 67.64
0.2 64.22 0.0005 70.32
0.3 1 0.0001 72.58
0.4 1 0.00005 70.5

Table 4. Results of hyperbolic linear evaluation with different
optimizers and learning rates.

in both the backbone and the head of the encoders. We
also try using a separate head for the hyperbolic branch. As
shown in Table 3, this leads to a more stable training when
larger learning rate is applied. However, we did not see any
improvements brought by this modification.

Hyperbolic linear evaluation. Apart from the common
linear evaluation in the Euclidean space, we show the hyper-
bolic linear evaluation results with different optimizers and
learning rates in Table 4. The idea is to test if the representa-
tions are more linearly separable in the hyperbolic space. We
follow the same setting of hyperbolic softmax regression [4]
and train a single hyperbolic linear layer. However, we find
the optimization with SGD can easily cause overflow. By
contrast, Adam is much more stable with appropriate learn-
ing rates.

C.1. Downstream performances by varying objects:
We divide the COCO validation set into two splits based

on whether the image has more than 5 objects or not. We
report the object detection and semantic segmentation results
of MoCo-v2 and HCL on each split in the table below. We
first note that images with more objects pose additional
difficulty for these tasks. We also find that our method



APb APb
50 APb

75 APm APm
50 APm

75

MoCo-v2 38.5 58.1 42.1 34.8 55.3 37.3
 5 objects / image 49.3 69.6 54.8 42.1 58.6 42.5
> 5 objects / image 34.6 52.6 37.8 34.5 54.1 34.4
HCL 40.6 61.1 44.5 37.0 58.3 39.7
 5 objects / image 51.7 72.8 57.6 44.6 61.9 45.2
> 5 objects / image 37.7 56.6 41.2 37.0 58.2 39.7

Table 5. Object detection and sematic segmentation results of ORL,
ORL with proposal boxes, and HCL pre-trained on COCO.

Description AP AP50 AP75 APs APl APm

MoCo-v2 39.8 59.8 43.6 36.1 56.9 38.7
HCL(Ours) 40.5 60.8 43.8 36.5 57.6 39.3
MoCo-v2 57.0 82.2 63.4 - - -
HCL(Ours) 58.2 83.1 64.5 - - -

Table 6. Object detection results on COCO (top 2 rows) and VOC
(bottom 2 rows). All SSL models have been pre-trained on Ima-
geNet for 200 epochs and then fine-tuned on COCO and VOC.

generally improves more on the images with more objects,
e.g. 3.1 vs. 2.4 on object detection AP.

C.2. Removing exponential mapping from hyper-
bolic loss.

To evaluate the importance of Lhpy, we directly use the
inner product between unnormalized scene and object rep-
resentations for a contrastive objective. As shown in Ta-
ble 7, we find that this leads to a performance drop on the
ImageNet-100 linear evaluation from 69.95 to 53.48. This
completes the picture that for modeling scene representa-
tions: hyperbolic space > spherical space > unconstrained
flat space.

MoCo-v2 HCL w/o exp HCL w/o Lhpy HCL

69.95 53.48 73.79 75.40
Table 7. Linear evaluation top-1 accuracy on ImageNet-100. Mod-
els are pre-trained on the OpenImage dataset.

C.3. Results on ImageNet
We also show results by pre-training on the ImageNet

dataset as well. Even though ImageNet is not primarily a
multi-object dataset, we still see some gains by using our
hyperbolic contrastive learning method.
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Figure 2. More images from ImageNet training set sorted by their representation norms.



Smallest norms (objects) Largest norms (scenes)

Figure 3. More images from ImageNet training set sorted by their representation norms.


