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1. Relationship to temporal graph neural net-
works (TGNNs)

The RVT backbone can be understood as an instance of a
discrete-time dynamic graph (DTDG) (section 4.6.1 in [4]).
A DTDG can be derived from continuous-time dynamic
graph (CTDG) by simply discretizing time.

More specifically, the proposed RVT backbone is an in-
stance of a DTDG with a fixed number of persistent tem-
poral nodes (given a certain input resolution). In our hi-
erarchy, we have four layers of nodes with temporal his-
tory (LSTMs in each stage). From here on, there are two
different interpretations: (1) The layers up to the LSTMs
are a carefully crafted message-passing algorithm interact-
ing directly with the nodes from the previous LSTM nodes
closer to the input; or (2) the strided conv layer creates a
smaller set of nodes. Block-SA subsequently operates on
these nodes by creating a new set of edges (fully graphs con-
nected in local windows) before applying message-passing
via self-attention. The same principle applies to Grid-SA
which instead creates fully connected graphs in a global di-
lated grid. The resulting node features are directly used as
input to the temporal nodes (LSTM) that also use the states
from the previous timestamp to update the node features.

Not every DTDG nor CTDG performs well for event-
based vision. In our work, we constrain the design specif-
ically for the problem to get a better trade-off for task per-
formance and inference speed.

2. Data Pipeline
2.1. Mixed Batching Strategy

Two common ways of training recurrent neural networks
is using either backpropagation through time (BPTT) or
truncated BPTT (TBPTT). This section describes a strategy
that combines both.

BPTT Dataloading For BPTT, the dataloader typically
samples short sequences without replacement from the
dataset. As a consequence, the model cannot use an ini-
tialized hidden state from earlier parts of the full sequence.

Dataloading Strategy mAP AP50 AP75

BPTT 38.8 66.0 39.5
TBPTT 44.1 72.0 46.1
Mixed 46.0 72.3 49.4

Table 1. Dataloading Strategy. Combining BPTT and TBPTT
(Mixed) yields the best results on the 1 Mpx validation set.

This has the advantage that we can perform more aggres-
sive data augmentation during training. However, the down-
side is that the model will fail to generalize to longer se-
quences. One possible solution to this problem is training
with TBPTT.

TBPTT Dataloading For TBPTT, the dataloader again
extracts short sequences. This time, these short sequences
are consecutive sequences from a longer sequences that usu-
ally cannot be loaded into RAM. Now we can train the
model with initialized, detached hidden states from the pre-
vious optimization step. This allows the model to generalize
to longer sequences but also precludes some data augmenta-
tion techniques. For example, zoom-in augmentation on the
whole sequence becomes impractical because we could re-
move too many labels in the process. Finally, it can also lead
to training instabilities and overfitting because the model is
optimized on samples from the same sequences for many
training steps.

Mixing BPTT and TBPTT What we found to work best
is to create two dataloaders: First, a dataloader that ran-
domly samples short sequences from the dataset. This is
useful for training with BPTT and improves the diversity of
samples in the batch. This dataloader also applies the full
set of data augmentations. Second, a dataloader that col-
lates data from iterating through whole sequences. This dat-
aloader is used for training with TBPTT and improves the
capability of the model to generalize to sequences longer
than the training sequence length. In this case, we do not
apply zoom-in augmentation.
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Magnitude

Augmentation Probability min max

horizontal flip 0.5
apply zoom 0.8
zoom-in 0.8 1 1.5
zoom-out 1-P(zoom-in) 1 1.2

Table 2. Data Augmentation Parameters. The probability de-
fines the Bernoulli distribution from which we draw the decision
whether to apply this augmentation on a given sample.

Table 1 compares the performance of the RVT-B model
on the validation set of the 1 Mpx dataset using the different
dataloading strategies. The performance of BPTT can be
improved by increasing the sequence length at the cost of
increased memory consumption and training time. Instead,
the mixed dataloading strategy allows training with a short
sequence length (here 5) while enjoying stable training with
improved detection performance.

In practice, on each GPU, half of the batch is cre-
ated with the BPTT dataloader and the other half with the
TBPTT dataloader. Both batches are separately loaded onto
the GPU before being collated and fed to the model. The
model then dynamically resets the hidden states based on
the information whether each sample in the batch originates
from the BPTT or TBPTT dataloader.

2.2. Data Augmentation Details

We apply three data augmentation techniques to train our
models from scratch. Table 2 summarizes the probability of
each augmentation being used on an individual sample.

For each sample, we may apply horizontal flipping and
also apply a zoom augmentation subsequently. For the
zoom augmentation we draw from a Bernoulli distribution
to indicate whether we apply the augmentation at all. If
zoom augmentation shall be applied, we randomly choose
between zoom-in or zoom-out augmentation based on the
respective probability. For the zoom augmentations, there
is also the parameter that defines the magnitude with which
the augmentation is applied. A magnitude of 1 means that
no zoom is applied while a magnitude greater than 1 in-
dicates how strongly zoom-in or zoom-out is applied with
respect to the original resolution. The magnitude that we fi-
nally apply is drawn from a continuous uniform distribution
with bounds min and max.

3. Additional Training Details
The attention window size for all stages is set to 8 × 10

for the Gen1 dataset and 6 × 10 for the 1 Mpx dataset. We
also found that it can help to maintain an exponential mov-
ing average (EMA) of trained parameters during training.

LSTM residual mAP AP50 AP75

without residual 47.6 70.1 52.6
with residual 46.0 69.8 50.3

Table 3. LSTM with and without residual connection. Using a
skip connection over the LSTM cells leads to worse results on the
Gen1 validation set.

Specifically, for the 1 Mpx dataset, we maintain a separate
set of parameters using an EMA smoothing factor of 0.001.
This means that for each iteration the EMA parameters are
computed from a convex combination of 0.01% of the new
weights and 99.99% of the previous weights. Overall, us-
ing EMA yields more stable validation results, but similar
performance can be achieved without EMA.

4. Additional Experiments
This section provides two additional experiments that did

not fit into the main paper. First, we briefly discuss an abla-
tion on the possibility of using residual LSTM layers. Sec-
ond, we follow with a qualitative study of cross-dataset gen-
eralization using our model trained on the 1 Mpx dataset.

4.1. Residual LSTM Ablation

Our model employs LSTM cells [3] without
skip/residual connections in the model. We also ex-
perimented with adding skip connections to the LSTM
cells on the Gen1 [1] dataset. Table 3 shows that adding
a residual connection to the LSTM cells leads to worse
results. We hypothesize that this residual connection
hampers the LSTM’s ability to control the mixture of
incoming (current timestep) and retained temporal features
(previous timesteps). For example, it would be difficult
for the residual-LSTM combination to ignore the incoming
feature because the output of the LSTM is simply added to
this feature. Without the residual connection, the LSTM
could simply set the input gate to 0 to ignore the input.

4.2. Cross-Dataset Generalization: From 1 Mpx to
DSEC

DSEC is a dataset that features event cameras and global
shutter cameras close to each other. Unlike the 1 Mpx
dataset [5] which was recorded mostly urban scenarios in
Paris, DSEC [2] provides recordings from urban and rural
regions in Switzerland. Furthermore, the event camera used
in the DSEC dataset is a Gen 3 prophesee event camera in-
stead of a Gen 4 camera as in the 1 Mpx dataset. In this
section, we qualitatively show that our model can be suc-
cessfully deployed in a different environment and using dif-
ferent event cameras.

We deploy RVT-B, trained on the 1 Mpx dataset , on sev-
eral sequences of the DSEC dataset to qualitatively assess



the cross-dataset generalization. While DSEC does not yet
provide object detection labels, we can visually assess the
quality of the detections by using the provided calibration
files to map the frames of the global shutter camera to the
event camera view.

Figure 1 and 2 show predictions of our model together
with the images closest in time to the detections. Figure 1
shows our model can successfully detect cars in mountain-
ous environments. In particular, Figure 1 (a) shows an HDR
scene where the global shutter frame is overexposed such
that the approaching car is barely visible. Due to the high
dynamic range of the event camera, our model can detect
the approaching car without any difficulty. Figure 2 features
more urban environments where our model also manages to
detect objects correctly.

Discussion of Failure Cases By and large, our model can
successfully detect objects on DSEC even though it has only
been trained on the 1 Mpx dataset. Still, we found failure
cases that might stem from distribution shift between the
datasets. For example, Figure 2 (c) shows the erroneous de-
tection of a two-wheeler that instead is a pillar on the street.

Overall, the model is good at detecting cars but is less
confident and accurate at detecting two-wheelers and pedes-
trians. This effect likely stems from the fact that the 1 Mpx
dataset has almost twice as many car labels as pedestrian
and two-wheeler labels combined.

5. Dataset Licenses
Gen1 [1] “Prophesee Gen1 Automotive Detection
Dataset License Terms and Conditions”: https://www.

prophesee.ai/2020/01/24/prophesee-gen1-
automotive-detection-dataset/

1 Mpx [5] “Prophesee 1MegaPixel Automotive Detec-
tion Dataset License Terms and Conditions”: https://
www.prophesee.ai/2020/11/24/automotive-
megapixel-event-based-dataset/

DSEC [2] “Creative Commons Attribution-ShareAlike
4.0 International public license (CC BY-SA 4.0)”: https:
//dsec.ifi.uzh.ch/
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Figure 1. Prediction examples on the DSEC dataset featuring a mountainous environment. Frames are shown only for visualization
purposes and are not used by the model. Column (a) shows a typical high-dynamic range (HDR) scenario where the vehicle is exiting
a tunnel with a car approaching from outside the tunnel. The HDR capabilities of the event cameras enables our model to detect the
approaching car. Column (b) shows a scenario with a wet road and challenging reflections.
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Figure 2. Prediction examples on the DSEC dataset featuring a (sub-)urban environments. Frames are shown only for visualization
purposes and are not used by the model. Column (a) illustrates a typical urban situation where pedestrians, two-wheelers, cars and other
road users occupy the street simultaneously. In column (c), we show a failure case of our model where a street pillar is erroneously detected
and classified as a two-wheeler.


