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1. More Statistical Analysis

Concurrent Events. There are usually multiple audio-
visual events occurring simultaneously in UnAV-100
dataset as in real-life scenes. Here, we define the overlap
rate O of each video as:

O =
Uo

Ue
, (1)

where Uo is the temporal union of overlapping intervals,
and Ue is the temporal union of the intervals of all audio-
visual events in the video. Totally, there are around 25%
of videos (2,651) containing concurrent audio-visual events
(O > 0.01, considering annotation errors) in our UnAV-
100 dataset. The overlap rate distribution of these videos is
illustrated in Fig. 1. We can see that the videos with low
and high overlap rates both have high proportions. Higher
overlap rates might indicate that the events have higher cor-
relations and usually occur at the same time, which requires
the model to have a strong ability of dependency modeling.
Temporal Dependencies between Events. We show
NPMI (Normalized Pointwise Mutual Information) [4] of
the pairs of simultaneous and consecutive audio-visual
events for all 100 event categories in Fig. 2(a) and Fig 2(b),
respectively. NPMI is commonly used in linguistics to rep-
resent the co-occurrence between two words. Firstly, in
Fig. 2(a), we can observe that the event categories from the
same domains are more likely to occur concurrently, e.g.,
the events of human activities, music performances, and the
sounds of vehicles/natural. Besides, the events from vari-
ous domains are usually accompanied by human activities,
e.g., playing acoustic guitar with male singing, basketball
bounce with people crowd, etc. Secondly, in Fig 2(b), in
addition to the NPMI for consecutive occurrences of dif-
ferent audio-visual events, we also compute the values for
the events from the same categories, which might be larger
than 1. It can be observed that the same events tend to occur
repetitively in a video, especially for some events that usu-
ally happen in a short period of time, such as people nose

Figure 1. Overlap rate distribution of the videos that contain con-
current events in our UnAV-100 dataset.

Dataset Videos Classes
Avg.

Length
Avg.

Instances Domains

Breakfast [7] 1,712 48 162s 6 Cooking
THUMOS14 [6] 413 20 212s 15.5 Sports
ActivityNet [1] 19,994 200 115s 1.5 Human Activities
Charades [8] 9,848 157 30s 6.8 Daily Activities

UnAV-100 (ours) 10,790 100 42s 2.8 Unconstrained

Table 1. Comparison with temporal action localization datasets
based on untrimmed videos.

blowing, people sneezing and basketball bounce, etc. More-
over, diverse consecutive dependencies also exist between
different audio-visual events.
Comparison with Existing TAL Datasets. In Tab. 1, we
compare our UnAV-100 dataset with four popular bench-
marks for temporal action localization. All these datasets
are based on untrimmed videos and have relatively small
scales, since annotating temporal boundaries for all in-
stances in videos is labor-intensive and time-consuming.
Our UnAV-100 is the only dataset that combines both au-
dio and visual signals to annotate instances, while others
just utilize visual content in videos. Their audio tracks are
usually very noisy and unrelated to the visual information,
e.g., background music and narrations, thus these datasets
are not suitable for joint audio-visual video understanding.
Besides, these benchmarks all focus on specific domains,
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such as human activities, sports, cooking, etc. By contrast,
our UnAV-100 covers many different domains including hu-
man/music/sport/animal/nature, etc., which helps machines
to understand more diverse audio-visual scenes in the wild.

2. Implementation Details
Feature Extraction. The visual features are extracted us-
ing two-stream I3D [2], which inputs a set of 24 RGB and
optical flow frames extracted at 25 fps. Each frame is first
resized such that the shortest side is 256 pixels, and then
the center region is cropped to 224 × 224. A 1024-d RGB
or flow feature vector is obtained from the final convolu-
tional layer of the corresponding branch of I3D. Then, the
two vectors are concatenated producing 2048-d features for
each stack of 24 frames. The audio features are extracted
using VGGish [5]. The input is a 96 × 64 log mel-scaled
spectrogram extracted for each 0.96s segment, which is ob-
tained by applying Short-Time Fourier Transform on a 16
kHz mono audio track. Then, a 128-d feature vector can be
obtained after an activation function and before a classifica-
tion layer. Here, we use 24 frames for each visual segment
to temporally match with the input of the audio modality as
24
25 = 0.96.
Network Architecture. In the cross-modal pyramid trans-
former encoder, the number of attention heads is 4 in both
uni-modal and cross-modal blocks. The temporal down-
sampling operation is realized by using a single depth-wise
1D convolution as in [10]. For temporal dependency model-
ing, the output dimension is converted as the shape of input
to formulate it as a plug-and-play operation, and we just
apply this operation once in our model.
Reproducibility. All our models are trained on a single
32GB NVIDIA Tesla V100 GPU and implemented in Py-
Torch deep-learning framework. During inference, we eval-
uate the performances of our method on the test set of our
UnAV-100 and use the best models on the validation set.

3. Ablation Study
Position Encoding. We explore the impact of position en-
coding in our transformer encoder. As shown in Tab. 2,
adding position embeddings can improve the performance
by 0.8% in average mAP, even though the temporal convo-
lutions (i.e., the projection layer and downsampling opera-
tions) already leak the location information as pointed out
in [9, 10].
Loss Weight. We also provide the ablation study on the
loss weight λ in our loss function. We train the model using
different loss weights λ ∈ [0.2, 0.5, 1, 2, 5], and report the
results in Tab. 3. It can be seen that the default value λ = 1
can yield the best performance.
Feature Stride. In our experiments, we use stride=8 with
a sliding window of 24 frames by default when extracting

PE 0.5 0.6 0.7 0.8 0.9 Avg.

✓ 50.6 44.8 39.8 32.4 21.1 47.8
49.5 45.1 39.7 32.8 21.9 47.0

Table 2. Ablation study on position encoding (PE).

λ 0.5 0.6 0.7 0.8 0.9 Avg.

0.2 49.9 45.0 39.6 32.2 20.7 46.9
0.5 50.1 45.4 39.8 32.3 21.2 47.3
1 50.6 45.8 39.8 32.4 21.1 47.8
2 49.8 45.3 40.2 33.0 22.4 47.2
5 49.0 44.7 39.2 32.3 22.2 46.4

Table 3. Ablation study on loss weight λ.

Stride 0.5 0.6 0.7 0.8 0.9 Avg.

8 50.6 44.8 39.8 32.4 21.1 47.8
16 48.9 44.6 39.0 32.9 21.8 46.7
24 49.7 44.7 38.5 31.0 20.9 47.0

Table 4. Ablation study on temporal feature stride.

Tmax 0.5 0.6 0.7 0.8 0.9 Avg.

192 49.9 45.2 39.7 32.6 21.7 47.0
224 50.6 45.8 39.8 32.4 21.1 47.8
256 49.6 45.3 39.9 33.1 22.3 47.2

Table 5. Ablation study on maximum input sequence length.

SD CD 0.5 0.6 0.7 0.8 0.9 Avg.

48.5 43.4 36.9 29.9 20.2 45.8
✓ 49.5 45.3 39.7 32.6 21.2 46.9

✓ 49.5 44.8 39.7 32.7 21.7 46.8
✓ ✓ 50.6 44.8 39.8 32.4 21.1 47.8

Table 6. Ablation study on dependency modeling. SD: simultane-
ous dependency branch; CD: consecutive dependency branch.

visual and audio features. Here, we study the performance
variation using different feature strides in Tab. 4. Reducing
the temporal feature resolution (i.e., larger strides, 16/24)
leads to obvious performance degradation, which is intu-
itively reasonable since the model might fail to detect many
short audio-visual events at a low temporal resolution.
Maximum Input Sequence Length. Furthermore, we vary
the length of the maximum input sequences of our model,
and the results are provided in Tab. 5. We can observe
that our model has quite stable results when using different
Tmax, and Tmax = 224 gets the best results.
Dependency Modeling. Since the two branches of tem-



poral dependency modeling aim to capture different corre-
lations between events within a video, we run an ablation
by removing each of the branches and show the results in
Tab. 6. It indicates that applying each branch separately also
leads to improvement, and the best result can be achieved by
combing both branches to model simultaneous and consec-
utive dependencies at the same time.

4. Experiments on Existing TAL Dataset
We also conduct experiments on THUMOS14

dataset [6], a widely-used dataset for temporal action
localization. The evaluation results on THUMOS14 test set
using only visual input are provided in Tab. 7. We use the
same strategy to extract features on THUMOS14 as used on
UnAV-100 for both methods to keep a fair comparison. We
can see that our model outperforms ActionFormer [10] by
a large margin (+3.1% mAP at tIoU=0.5), even without the
cross-modal fusion strategy. Besides, we tried to only use
the audio modality in THUMOS14 to locate actions, but got
very bad results (just 4.3% average mAP) on both models,
which indicates that the audio tracks in THUMOS14 are
quite noisy and cannot provide useful information.

Method 0.3 0.4 0.5 0.6 0.7 Avg.

ActionFormer [10] 73.4 67.5 57.6 47.6 33.7 56.0
Ours 74.8 70.1 60.7 48.1 34.0 57.5

Table 7. Experiments on THUMOS14 dataset with only visual
modality as input (mAP@[0.3:0.1:0.7] is reported).

5. More Qualitative Results
More qualitative results are presented in Fig 3, which

includes the prediction results of our model variants using
different modalities as input. Generally speaking, cross-
modal perception encourages the model to obtain more cor-
rect localization results. For example, Fig. 3(a) refers to the
relatively constant visual information versus dramatically
changing audio signals. By integrating both modalities, the
model can better judge the event boundaries. Besides, our
audio-visual model can also get promising performance in
some complex audio-visual scenarios, as in Fig. 3(c) and
Fig. 3(d), where many audio-visual events occur concur-
rently or over very short periods of time.

6. Discussion
Limitations. There is still a wide scope for exploration and
improvement on the basis of our work. For instance, our
dataset is limited to a temporal localization task. We will
explore other audio-visual problems, such as representation
learning and sound source localization in real-life and com-
plex scenarios in our subsequent study. Besides, although

our model can obtain a promising performance, as a base-
line, its capability is still limited in some complex situa-
tions. For example, in Fig. 3(c), the model gets an incorrect
boundary of the dog barking event when the barking brown
dog is out of the screen and a non-barking black one can be
seen. This indicates that our model might fail to effectively
filter out interference information for such a difficult case.
And the model might also fail to predict precise boundaries
when one modality persists while another disappears for
a short period of time (e.g., the event of vacuum cleaner
cleaning floors in Fig. 3(c)). In addition, for some instant
events with very short duration (e.g., basketball bounce in
Fig. 3(d)), our model might get unsatisfactory results. Over-
all, dense-localizing audio-visual events is inherently a very
challenging task, and it requires the model to have a strong
fine-grained cross-modal understanding ability. Therefore,
more advanced models that could better solve the above
difficulties are expected to boost performance further. We
hope our work as the first attempt at untrimmed audio-visual
video understanding can inspire more people to explore the
field.
Ethic concerns and biases. Our UnAV-100 is sourced from
VGGSound dataset [3] that has already tried to mitigate eth-
ical issues. During data collection, we made further efforts
to manually check all videos to avoid mature, sensitive, or
offensive content. Besides, our UnAV-100 follows the nat-
ural distribution of instances present on the website, which
may reflect some biases in topics. For example, there are
more man/woman speaking events than other categories.
Efforts have been made to mitigate such imbalance.
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Figure 2. NPMI of the pairs of simultaneous (a) and consecutive (b) audio-visual events in our UnAV-100 dataset. In (b), the horizontal
axis shows the first event, and the vertical axis shows the second subsequent event. The event categories are grouped by domains.
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Figure 3. More qualitative results on the UnAV-100 test set. GT: ground truth, A: the prediction of the audio-only variant, V: the prediction
of the visual-only variant, AV: the prediction of our audio-visual model. We show boundaries with the highest overlap with ground truth.
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