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Table 1. Results on the MPII [1] test set (PCKh@0.5). ’†’ means
using extra training datasets. ’‡’ means using larger image size.

Method Hea. Sho. Elb. Wri. Hip. Kne. Ank. Mean

Xiao et al. [9] 98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5

Tang et al. [7] 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3

Sun et al. [6, 8] 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3

Cai et al. [4] 98.5 97.3 93.9 89.9 92.0 90.6 86.8 93.0

Bulat et al. [3]† 98.8 97.5 94.4 91.2 93.2 92.2 89.3 94.1

Bin et al. [2]‡ 98.9 97.6 94.6 91.2 93.1 92.7 89.1 94.1

Our (Swin-Base) 98.7 97.5 94.2 90.6 92.9 92.1 88.7 93.8

Our (Swin-Large) 98.9 97.8 94.8 91.1 93.6 93.0 89.7 94.3

1. Results on the MPII Test Set

We provide the results on the MPII [1] test set. Table 1
shows the results on the MPII test set. Our approach outper-
forms the other methods, even those that utilize extra train-
ing datasets or larger image sizes.

2. Results on the H36M under occlusion

To evaluate the performance of PCT under different oc-
clusion conditions, we artificially occlude the images in the
h36m test set by either cropping or masking them. Table 2
reports the results of the models with and without PCT. It
reveals that the advantages of PCT become more apparent
as the level of occlusion increases.

3. More visual illustrations for the sub-
structures.

Figure 1 provides more examples of sub-structures rep-
resented by our compositional tokens. We use 34 tokens to
represent a human pose. We statistically find that almost
two tokens are responsible for a sub-structure consisting of
a body joint and its related joints, one is for major changes,
and the other is for minor jitters. We select some of them to
show.
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Table 2. Results on the H36M [5] test set (MPJPE mm) under
different occlusion conditions.

Mask Ratio 0.0 0.2 0.4 0.6 0.8

w/o PCT 53.9 66.6 94.4 157.6 268.7

PCT 50.8 63.4 88.2 145.5 287.9

Crop Ratio 0.0 0.1 0.2 0.3 0.4

w/o PCT 53.9 53.9 54.8 60.0 84.1

PCT 50.8 50.9 51.2 55.0 74.8
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Figure 1. Each token is learned to represent a sub-structure. In each row, we show that if we change the stage of one token to different
values, it consistently changes the same sub-structure highlighted by orange. The black poses are before changing.
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