
Supplementary Material for PartManip: Learning Cross-Category
Generalizable Part Manipulation Policy from Point Cloud Observations

Haoran Geng 1,2* Ziming Li 1,2* Yiran Geng 1,2 Jiayi Chen 1,3 Hao Dong 1,2 He Wang1,2†

1CFCS, Peking University 2School of EECS, Peking University
3Beijing Academy of Artificial Intelligence

https://pku-epic.github.io/PartManip

1. More Details about Our Benchmark

1.1. Objects and Robot Assets

We select 494 object instances from GAPartNet [11]
dataset. GApartNet provides large-scale articulated objects
with rich annotations. For doors and drawers, our bench-
mark requires a handle on it. For the button, there is no
constraint. Because there are too many buttons on some re-
mote or phone, we randomly select a maximum of 5 buttons
on each object. The total benchmark contains 494 objects
and 1432 different target parts.

1.2. Environment Settings

We carefully set the environment parameters in Isaac-
gym. To simulate real-world physics, we set the contact
offset = 1e-3, which means that our gripper is harder to ma-
nipulate the part by scratching or rubbing the edge of the
part. Also, we set a slight recovery force (= 0.1) to avoid
the agent moving the part to a successful state by slightly
touching it. The stiffness of the cabinet dof(slider joint for
drawer and button, rotation joint for door) is set to 20. The
damping of the cabinet dof is set to 200. The friction coef-
ficient of cabinet dof is set to 5.

For robot controlling, we use pos control mode. This
means that we need to input each joint angle of the Franka
arm to the network at each step. We find that in our tasks,
using pos control is easier for imitation learning.

1.3. Reward Weight

For each task, we tune the reward weight to train a
human-like policy. We list rotation weight λr , handle dis-
tance weight λd, part moving weight λp, and tips closure
weight λt in Table 2.

rotation weight. For the closing task and pressing but-
ton task, we don’t need the gripper to grasp the handle, so
we set λr = 0. For the other tasks, we set it to 0.2.

handle distance weight. The value of λd

λp
is impor-

tant for opening task. If the value is too small, the pol-

icy wouldn’t learn to open the part using the handle. If the
value is too large, the policy wouldn’t try to open the door,
but only learn to grasp the handle. The λdf is set to non-
zero for the opening task because after the part is opened,
the gripper can move away from the handle.

part moving weight. For the grasping task, we don’t
require the agent to manipulate part, so we set λp = 0.

tip closure weight. For the opening and closing tasks,
we focus on using the handle to finish the task but don’t
require the final grasp pose of the gripper. So we set λt = 0.

1.4. Initialization and Success Criteria

For each task, we initialize the gripper at a certain dis-
tance (i.e., 50cm) away from the center of the target part,
facing the object. The initialization of objects and the suc-
cess criteria for each task are shown below:

OpenDoor: The door should be opened to more than 30
degrees from the initial closed state.

OpenDrawer: The drawer should be opened to more
than 20% of the maximum opening length from the initial
closed state.

CloseDoor: The door should be closed to less than 1
degree from the initial opening angles of 45 degrees.

CloseDrawer: The drawer should be closed from the
initial opening length of 30 cm to less than 1 cm.

PressButton: The button should be pressed for more
than 50% of the maximum pressing depth.

GraspHandle: The robot should close two tips to less
than a threshold from different sides of the handle, while
the center of the two tips is inside the handle bounding box.

2. More Details about Our Method
Our pseudo code is shown in algorithm 1 and algorithm

2.
For state-based policy training, we update E epochs in

one step. In one epoch, the state and actions buffer Dπθ
is

divided in B minibatch to compute one gradient step. So
after sampling once, the network update E ∗B time.

1

https://pku-epic.github.io/PartManip

Algorithm 1 State-based Expert Training
Input: robot states S, handle bounding box bhandle, part
bounding box bpart, state s = (S, bpart, bhandle), policy
network θp (i.e., actor θap and critic θcp),
for t = 0, 1, 2 . . . do

Transfer observation to canonical space
Sample trajectories Dπθ

= {(si.ai)}ni=1

for e = 1, 2, . . . , E do ▷ PPO update
for b = 1, 2, . . . , B do

update policy network θp, according to: LRL

Select highest success rate θp → θexpert

while |Ddemo| < buffer size do
sample trajectory ti by θexpert
append ti to Ddemo

Algorithm 2 Vision-based Student Training
Input: partial point cloud P ∈ RN×3, robot states s, vision
backbone θb, policy network θp (i.e., actor θap and critic θcp),
expert policy θexpert, demonstration buffer Ddemo
Pre-training: update the vision backbone θb and actor
MLPs θap , according to LBC
for t = 0, 1, 2 . . . do

Sample trajectories Dπθ
= {(si, oi, ai)}ni=1

for e = 1, 2, . . . , E do
for b = 1, 2, . . . , B do

augment point cloud observation oi as A(oi)
update backbone θp and the actor of policy network
θap , according to: λDALDA + λadvLadv

For state-to-vision distillation, we use point cloud aug-
mentation. We use point cloud jittering with a distance of
0.1 and a strong color augmentation, which changes the
GAParts color to a random color during a specific episode.
Although we randomly choose a color, we fix it during one
episode. This technique works well and improves perfor-
mance in the unseen category.

There is a potential problem for expert distillation. The
output of the actor can be an arbitrary value in Rn. Here
n is the output dimension of the actor. Because we use the
pose control, and the joint angle is in the range (−π, π). If
the value ai in ith dimension is out of this range, it would
shift to a′i satisfied a′i = ai + 2kπ, k ∈ Z. Because of this,
multiple outputs would correspond to one action in the sim-
ulator so the L2 loss of expert action and student action is
not positively associated with the similarity between expert
action and student action. To tackle this problem, we add an
additional Tanh layer and scale the action to (−π, π). We
use the scaled action to compute dagger loss and update the
network.

3. More Details about the Experiment Setting

3.1. Training Details

We train our state-based policy on Nvidia GeForce RTX
2080Ti for 6 hours. For each task, we use all of the data in
our dataset claimed in the paper. The PPO hyperparameter
is shown in Table 3.

For actor and critic networks, we use 3 hidden layers of
MLP. The hidden layer dimension of the MLP is 512, 512,
64. For vision-based policy, we use the Sparse-Unet back-
bone. If the input point cloud has more than N = 20, 000
points, we first downsample it to 20000 points using FPS
(Farthest Point Sampling). Then we voxelize the input point
cloud into a 100 × 100 × 100 voxel grid. The backbone
U-Net has an encoder and decoder, both with a depth of 6
(with channels of [16, 32, 48, 64, 80, 96, 112]) and outputs a
N×K per-point feature F where K = 16. We speed up the
3D Sparse UNet inference speed by introducing batch vox-
elization for point clouds and high parallelization of sparse
convolution, thanks to the latest high-performance third-
party code base like open3d and sparse

Because PPO is an on-policy RL algorithm, for each N
step, we update the policy. To leverage the fast convergence
of PPO, we want to update as frequently as we can. On the
other side, due to the noisy gradient of RL, the batch that is
used to compute the gradient should not be too small, which
is equal to Tenv ∗N/M . Here T is the training environment
number, and M is the minibatch size. Empirically we find
that the batch size near to 2000 is fine. For six tasks, due
to the number of training data, we choose proper minibatch
and nsteps. The task-specific hyperparameters are shown in
Table 2.

PPO params value / type
learning rate 3e-4

optimizer Adam
gamma 0.99
lambda 0.95

desired kl 0.01
clip range 0.1

entropy coef 0.01
init noise std 1

Table 3. PPO Hyperparameters of Policy Training

3.2. More Details and Results of the Baselines

For opening the door and drawer, thank the previous
exploration, We compare our policy with many baselines.
For [1,4,7,8], they focus on tasks like opening drawers and
doors and we can modify their method to our OpenDoor and
OpenDrawer tasks. And for the other four tasks, we also
compare with some possible methods if they can be easily
modified to fit our framework. More results are shown in

robot state part bounding box handle bounding box Point Cloud part mask handle mask
Ours (state-based) ✓ ✓ ✓

Where2Act [2] ✓ ✓ ✓
VAT-Mart [9] ✓ ✓ ✓
Maniskill [3] ✓ ✓ ✓ ✓

Ours (vision-based) ✓ ✓

Table 1. Comparison with Other Methods.

name opening door opening drawer closing door closing drawer pressing button grasping handle
Train environment number 363 246 363 246 215 88

minibatchs 2 3 2 3 2 2
nsteps 20 20 20 20 20 40
λr 0.2 0.2 0 0 0 0.2
λd 2 1.3 1 1 1 1
λp 1 1 1 1 100 0
λt 0 0 0 0 10 1
λdf 1 2 0 0 0 0

Table 2. Task Specific Hyperparameters of State-based Policy Training

task method Training Set ValIntra Set ValInter Set

Closing Door(%)

Where2act [2] 77.3±0.1 54.6±0.0 51.5±0.2
PPO [6] 35.5±1.1 37.6±0.9 15.4±0.5

DAgger [5] 84.5±2.5 79.4±1.1 69.9±2.3
Ours 88.7±1.0 88.4±2.9 87.0±1.6

Closing Drawer(%)

Where2act [2] 89.9±0.2 90.5±0.1 89.9±0.3
PPO [6] 69.9±5.9 75.2±2.6 59.3±2.1

DAgger [5] 95.9±1.2 97.3±1.1 91.5±0.2
Ours 99.6±0.6 97.9±2.1 98.6±1.2

Pushing Button(%)

Where2act [2] 15.5±0.2 16.2±0.1 19.3±0.3
PPO [6] 25.5±0.2 21.6±1.1 7.9±5.5

DAgger [5] 32.8±2.2 41.2±6.6 29.8±1.2
Ours 89.6±2.9 79.6±4.2 66.6±4.2

Grasping Handle(%)

Where2act [2] 27.7±0.1 25.4±0.2 13.9±0.3
PPO [6] 15.7±2.2 13.2±0.6 9.9±3.5

DAgger [5] 45.6±2.2 35.5±2.1 29.8±2.9
Ours 79.8±2.4 70.0±2.4 56.4±2.9

Table 4. More Results of Method Comparison and Baselines

Table 4.
PPO [6]. We directly use the PPO algorithm to learn a

vision-based policy to handle each task. The detailed PPO
parameter and training strategy is the same as the state-
based expert training in our method.

Where2Act [2]. We input the part mask as an extra di-
mension in our task as a baseline, and others remain the
same. We modified the where2act interaction pipeline to
finish our tasks. We use a similar pulling motion for the first
three tasks and a pushing motion for the fourth task. Giving
only a point to indicate the part to be interacted with makes
it challenging for where2act to perform proper actions, es-
pecially for opening drawers and doors. We thus provide
additional information (i.e., the handle center of the target
door and drawer), and this method needs to select one point
from the given points. Then, after motion direction selec-
tion, the action is performed to finish the task. We constrain

Nw2a = 10 actions to finish these tasks.
ILAD [10]. Due to we have designed a dense reward

in our task, we use our dense reward instead of their extra
Q functions to compute the advantage in the third term of
gILAD. The demonstrations are also collected by expert
policy as the GAIL [7] baseline implementation. We don’t
input part 6D pose into the network as a fair comparison to
our method.

ManiSkill [3] Winners, i.e., Shen et. al [7], SilverBul-
let3D [4], Wu et. al [8], Dubois et. al [1]. We follow the
ManiSkill [3] settings and follow the corresponding policy
learning strategy to learn. If the method needs collected
demonstrations as input, we provide the demonstrations col-
lected by the state-based expert.

For these baselines, we analyze that their performances
are limited due to the distribution shift in behavior cloning,
lacking vital information with realistic sensory observation
input and noisy reinforcement learning gradient.

3.3. More Results for a Single Camera Setting

Here we provide more experiment results for a sin-
gle camera setting. For OpenDoor, the performances are
36.7±3.3, 33.9±2.4, 22.6±3.0 in the training set, Val-Intra
set and Val-Inter set respectively. For OpenDrawer, the per-
formances are 64.5±5.5, 60.2±4.4, 17.1±2.2 in the training
set, Val-Intra set and Val-Inter set respectively.

3.4. Some Qualitative Results for the Failure Cases

Here we provide some qualitative results for failure
cases. In Fig. 1, we show two failure cases. For the left
one, the gripper fails to identify the handle and grasps the
wrong position due to the thin and flat handle shape (yellow,

Figure 1. Failure Cases

zoom in to see), while for the right one, the door opening
fails later for unstable grasping.

4. Real Experiment
We use the robot arm (FRANKA) to manipulate previ-

ously unseen real objects with only partial point cloud ob-
servations. A partial point cloud of the target object instance
is acquired from the RGB-D camera (Okulo P1 ToF sensor
in our experiments). To set up the interaction environment,
we use aruco markers to calibrate the camera sensor and
place the object and the robot arm in the proper positions,
the same as the trained policy in the simulator. We also pro-
vide a point to indicate the part to interact with, just like
we did in the simulator. During manipulation, we use the
control API provided by the robot arm system to follow the
trajectory (a sequence of joint angle and gripper position)
and finish the tasks.

References
[1] Fabian Dubois, Eric Platon, and Tom Sonoda. Improv-

ing performance on the maniskill challenge via super-
convergence and multi-task learning. In ICLR 2022 Work-
shop on Generalizable Policy Learning in Physical World,
2022. 2, 3

[2] Kaichun Mo, Leonidas J Guibas, Mustafa Mukadam, Abhi-
nav Gupta, and Shubham Tulsiani. Where2act: From pixels
to actions for articulated 3d objects. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 6813–6823, 2021. 3

[3] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xu-
anlin Li, Stone Tao, Zhiao Huang, Zhiwei Jia, and Hao
Su. ManiSkill: Generalizable Manipulation Skill Benchmark
with Large-Scale Demonstrations. In Annual Conference on
Neural Information Processing Systems (NeurIPS), 2021. 3

[4] Yingwei Pan, Yehao Li, Yiheng Zhang, Qi Cai, Fuchen
Long, Zhaofan Qiu, Ting Yao, and Tao Mei. Silver-bullet-
3d at maniskill 2021: Learning-from-demonstrations and
heuristic rule-based methods for object manipulation, 2022.
2, 3

[5] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A re-
duction of imitation learning and structured prediction to no-

regret online learning. In Proceedings of the fourteenth inter-
national conference on artificial intelligence and statistics,
pages 627–635. JMLR Workshop and Conference Proceed-
ings, 2011. 3

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 3

[7] Hao Shen, Weikang Wan, and He Wang. Learning category-
level generalizable object manipulation policy via genera-
tive adversarial self-imitation learning from demonstrations.
arXiv preprint arXiv:2203.02107, 2022. 2, 3

[8] Kun Wu, Yinuo Zhao, Zhiyuan Xu, Zhen Zhao, Pei Ren,
Zhengping Che, Chi Harold Liu, Feifei Feng, and Jian Tang.
A minimalist ensemble method for generalizable offline deep
reinforcement learning. In ICLR 2022 Workshop on Gener-
alizable Policy Learning in Physical World. 2, 3

[9] Ruihai Wu, Yan Zhao, Kaichun Mo, Zizheng Guo, Yian
Wang, Tianhao Wu, Qingnan Fan, Xuelin Chen, Leonidas
Guibas, and Hao Dong. VAT-mart: Learning visual action
trajectory proposals for manipulating 3d ARTiculated ob-
jects. In International Conference on Learning Represen-
tations, 2022. 3

[10] Yueh-Hua Wu, Jiashun Wang, and Xiaolong Wang. Learn-
ing generalizable dexterous manipulation from human grasp
affordance. arXiv preprint arXiv:2204.02320, 2022. 3

[11] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Ji-
aya Jia. Ipod: Intensive point-based object detector for point
cloud, 2018. 1

	. More Details about Our Benchmark
	. Objects and Robot Assets
	. Environment Settings
	. Reward Weight
	. Initialization and Success Criteria

	. More Details about Our Method
	. More Details about the Experiment Setting
	. Training Details
	. More Details and Results of the Baselines
	. More Results for a Single Camera Setting
	. Some Qualitative Results for the Failure Cases

	. Real Experiment

