
Learned Two-Plane Perspective Prior based Image Resampling for
Efficient Object Detection

A. Implementation, Training and Evaluation
Details

A.1. Implementation Details

We implemented our approach using Pytorch [13] and
mmdetection [3]. The two-plane perspective prior is im-
plemented as a neural network layer with learnable param-
eters that are global (fixed warps parameterized by van-
ishing point). We employ differentiable versions of Di-
rect Linear Transform [6] and warp perspective from Ko-
rnia [15], while we reuse implementation of separable neu-
ral warps from [16]. To detect vanishing points, we employ
NeurVPS [19] for fixed cameras. We use VPNet [12] with
ResNet18 backbone for autonomous navigation.
Parameter Initialization We selected one representative
image, and initialized the learnable parameters (i.e. θ’s and
α’s) via visual inspection. The guiding principal was to en-
large far objects while trying to distort the close-by objects
as less as possible. The same initial parameters are used
for all the datasets. Please look at our code for the initial
parameters.

A.2. Evaluation Details

Detection Model Choice We experiment with Faster R-
CNN as our base detection model as prior work has shown it
occupies the optimal sweet-spot [8] w.r.t latency and accu-
racy on modern GPUs. However, our approach is agnostic
to the choice of detector and our results generalize to other
detectors.
Latency: We capture end-to-end latency in milliseconds,
that includes image pre-processing, network inference and
post-processing, following protocol from prior work [16].
Scale The image down-sampling factor is equal in both spa-
tial dimensions. So an image originally 1920 × 1200 (1x
scale) when down-sampled to 0.25x is a 480× 300 image.

A.3. Training Details

For training our proposed approaches, to train the Faster
R-CNN model we use the Adam optimizer with a learning
rate of 3 × 10−4. For training any methods by Fovea [16]
we follow their protocol. We follow the protocol mentioned
by [4, 5] for training their approach.

Argoverse-HD We considered the same base architecture
(Faster R-CNN) for all the methods. We compare with
SOTA [16] using models provided by their public code re-
lease, and follow the training protocol prescribed in their
work, training our models for 3 epochs.
WALT We considered the same base architecture (Faster
R-CNN) for all the methods. We trained the models (and
learnt the warping function parameters, if applicable) using
the Adam optimizer with the same learning rate and other
parameters for 6 epochs.
Vanishing Point Estimation For NeurVPS, we directly
employ the pre-trained model trained on Natural Scenes
(TMM17) dataset [20] part of their public code release.
While for VPNet [12], as there is no public code release,
we implement this architecture employing a ResNet18
backbone attached to a modified YOLO head. We omit
the upsampling refinement procedure described in [12],
as model’s median error in vanishing point prediction is
around 10 pixels with an average latency of 28 ms, which is
sufficient for our method to work. The off-the-shelf model
is executed at nv = 30 to amortize the cost of executing
this model. We also tried using LaneAF [1] to obtain lane
lines (similar latency), however, we observed the method
was prone to errors while clustering lines and obtaining the
vanishing point.

B. Multiple Vanishing Points
Our method can consider additional planes that correspond
to lines meeting at a different vanishing point. For example,
a traffic camera with a wide field of view that is placed at
an intersection observing two roads simultaneously would
benefit from this. Assuming N vanishing points, consider-
ing Saliency Svi corresponding to vanishing point vi,

S =

N∑
i=0

λiSvi (1)

where λi’s are learnable, initialized as 1
N . Please ob-

serve the case of N = 2 in an image from the commuter
bus dataset in Figure 1, wherein combining saliencies from
two vanishing points (obtained from [10]) ensures far away
objects of interest are sampled more.
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Figure 1. Multiple Vanishing Points: Saliency from First Vanishing Point parallel to sidewalk “compresses” far away cars on perpendic-
ular road. Second Vanishing Point ensures those cars are not compressed. Please zoom in to observe the vanishing points and deformation.

Method Scale AP APS APM APL

RetinaNet 0.5x 22.6 4.0 22.0 53.1
Fovea (SI ) [16] 0.5x 24.9 7.1 27.7 50.6
Two-Plane Prior 0.5x 26.3 10.1 29.2 50.5

Baseline at higher scales

RetinaNet 0.75x 29.9 9.7 32.5 54.2

Table 1. Alternate Detector: We replace Faster R-CNN with
RetinaNet (archetypal one-stage detector), and observe consider-
able improvements over Baseline (RetinaNet with uniform down-
sampling) and SOTA trained on Argoverse-HD dataset.

We observed in the datasets we considered, multiple
vanishing points were rare as it generally requires a cam-
era with a large field of view. Thus, we employed mod-
els [12,19] trained on Natural Scenes dataset, which predict
only one vanishing point. However, vanishing points can be
estimated from other methods [10, 11, 19] which do predict
all the vanishing points, but incur higher overheads.

C. Results on Another Detector

Adaptive spatial sampling mechanisms leverage and ex-
ploit priors corresponding to the input images in a way
that is agnostic to the detection method. We expect our
approach to generalize across detectors, similar to obser-
vations by such warping mechanisms and saliency priors
proposed earlier [16]. We choose RetinaNet [9], a popu-
lar single-stage object detector as our archetypal example
(Faster R-CNN [14] is the two-stage archetype). Results
can be viewed in Table 1. Our approach improves upon
both the baseline Faster R-CNN and SOTA, specially for
small and medium sized objects, following the trends ob-
served in the main manuscript.

Method Scale Model AP APS APM APL

Faster R-CNN 0.5x COCO 15.3 1.1 12.5 40.5
Faster R-CNN 0.5x AVHD 15.1 1.0 10.6 39.0

Fovea (SD) [16] 0.5x AVHD 13.7 1.3 10.0 34.7
Fovea (SI ) [16] 0.5x AVHD 16.4 2.1 12.8 38.6

Two-Plane Prior (Psuedo.) 0.5x AVHD 16.2 4.7 15.9 33.3
Two-Plane Prior (Psuedo.) 0.5x COCO 20.9 5.8 19.4 44.2

Baseline at higher scales

Faster R-CNN 0.75x AVHD 19.7 3.0 16.1 44.2
Faster R-CNN 0.75x COCO 20.3 3.7 18.2 45.3
Faster R-CNN 1x AVHD 22.6 5.7 20.1 45.7
Faster R-CNN 1x COCO 23.1 6.5 21.7 46.1

Table 2. Generalization to BDD100K: Scale in this case is
fixed to 0.5x, AVHD refers to Argoverse-HD and COCO datasets
respectively. AVHD models are finetuned from the pre-trained
COCO model. We compare generalization on the BDD100K
dataset. Our method assumes availability of training set images
of BDD100K and not labels, we generate pseudo-labels from the
available model (Section 3.6) to learn the Two Plane prior.

Method sAP sAPS sAPM sAPL

StreamYOLO-L [17] 25.9 8.6 24.2 40.9
StreamYOLO-M [17] 25.9 9.2 24.8 41.0
StreamYOLO-S [17] 29.6 11.0 30.9 51.6

Ours 30.0 13.7 31.5 52.2

Table 3. “Real-Time” Detectors: Streaming Comparison on
Argoverse-HD on Titan X. StreamYOLO-M and StreamYOLO-L
single-frame latency is 45.8 ms and 62.9 ms respectively, is greater
than 33ms, violating [17]’s “real-time” restriction. StreamYOLO-
S satisfies (20.8 ms), hence has better performance.

D. Additional Results on Autonomous Driving

We shall consider the comparisons made in Section 5 on
Argoverse-HD in the main manuscript and present some ad-
ditional results (specially across different categories present



Method Scale AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck

Faster R-CNN (Pre.) 0.5x 21.5 35.8 22.3 2.8 22.4 50.6 20.8 9.1 13.9 7.1 48.0 16.1 37.2 20.2
Faster R-CNN 0.5x 24.2 38.9 26.1 4.9 29.0 50.9 22.8 7.5 23.3 5.9 44.6 19.3 43.7 26.6

Fovea (Learned Nonsep.) [16] 0.5x 25.9 42.9 26.5 10.0 28.4 48.5 25.2 11.9 20.9 7.1 39.5 25.1 49.4 28.1
Fovea (Learned Sep.) [16] 0.5x 27.2 44.8 28.3 12.2 29.1 46.6 24.2 14.0 22.6 7.7 39.5 31.8 50.0 27.8

SO
TA

Fovea (SD) [16] 0.5x 26.7 43.3 27.8 8.2 29.7 54.1 25.4 13.5 22.0 8.0 45.9 21.3 48.1 29.3
Fovea (SI ) [16] 0.5x 28.0 45.5 29.2 10.4 31.0 54.5 27.3 16.9 24.3 9.0 44.5 23.2 50.5 28.4
Fovea (L:SI ) [16] 0.5x 28.1 45.9 28.9 10.3 30.9 54.1 27.5 17.9 23.6 8.1 45.4 23.1 50.2 28.7

O
ur

s

Ground Plane Prior 0.5x 29.1 46.2 30.5 15.5 27.5 48.3 28.6 15.0 10.4 10.5 33.7 46.2 55.4 32.9
Two-Plane Pr. (Psuedo.) 0.5x 27.1 43.4 28.4 9.8 28.9 50.2 28.2 16.2 20.6 8.1 50.8 26.1 45.2 21.7
Two-Plane Pr. (Avg VP) 0.5x 29.6 45.9 31.6 12.7 30.7 52.7 28.4 14.3 24.3 11.9 38.5 31.6 53.9 34.2
Two-Plane Prior 0.5x 30.8 47.2 33.2 14.5 31.6 52.9 30.0 16.7 24.1 13.7 35.9 35.9 55.3 35.3

Baseline at higher scales

Faster R-CNN 0.75x 29.2 47.6 31.1 11.6 32.1 53.3 29.6 12.7 30.8 7.9 44.1 29.8 48.8 30.1
Faster R-CNN 1.0x 33.3 53.9 35.0 16.8 34.8 53.6 33.1 20.9 38.7 6.7 44.7 36.7 52.7 32.7

Table 4. Evaluation on the Argoverse-HD dataset: This is an expanded version of the Table present in the manuscript. We see improve-
ments for most of the objects that are on the ground, with much better overall performance for both small and medium sized objects along
with improvements in AP50 and AP75. Notice that Two-Plane prior performs at par with SOTA on “traffic-light” category. Pre. denotes
Pretrained model, while Psuedo. denotes model trained with Psuedo-Labels from pretrained model (no access to Argoverse-HD labels) as
described in Section 3.6. We have bolded all of our method variations that perform better than SOTA.

in the dataset).
Comparison with Learned Fovea [16]: Fovea [16] also
proposed end-to-end global, dataset-wide saliency map
S learned via backpropagation (Learned Seperable and
Learned Nonseperable). However, they observed worse per-
formance compared to their bounding box priors (SD and
SI ), see Table 4. We show that end-to-end learned saliency
is better, with careful geometric parameterization.
Improved Performance on ground plane: We observe
improved performance over state-of-the-art on every object
category for objects on the ground plane (person, traffic
light, bike, stop-sign, car, truck) apart from motorbike (See
Table 4). On further observation, this might be an artifact of
the label skew of the Argoverse-HD dataset (mbike has the
least number of instances). For objects not on the ground
plane, like traffic-light, we observe performance as good as
SOTA.
Generalization to BDD100K: We compare generaliza-
tion from approaches trained on Argoverse-HD and COCO
datasets to BDD100K MOT dataset (See Table 2). Our
approach assumes access to training set images from
BDD100K dataset, but not it’s ground truth labels. As our
priors can be learnt without access to ground truth data,
we employ the method detailed in Section 3.6 to gener-
ate pseudo labels to learn and adapt the geometric param-
eters on this dataset by training on these pseudo-labels for 1
epoch only.

We observe that our method nearly matches SOTA when
adapted starting from a model finetuned on Argoverse-
HD, however, dramatically exceeds it’s performance when
adapted from a model solely trained on COCO. We believe

the reason for this mismatch is due to catastrophic forget-
ting [7] observed in finetuned models when evaluated on
out-of-distribution data. Lastly, the results indicate the ben-
efits of learnability of our perspective prior, we observe
increase in performance for “free” even when images are
available without access to ground truth.
Comparison with “Real-Time” Detectors: Real-time de-
tectors like [17] have been recently proposed which predict
boxes Gt+1 at time t (of frame Ft+1; available solely dur-
ing training and not testing) given Ft to satisfy sAP. Ap-
proaches like these constraint the detector to perform the
computation within a latency budget (< 33ms or 30 FPS).
Our methods are complementary to such detectors, as long
as their constraint is satisfied.

However, real-time detectors (termed as “fast” strategy)
might be suboptimal [8]. Satisfying the real-time detector
constraint may not be optimal for every hardware platform,
specially on slower edge devices. Such methods [17] are
not hardware-agnostic, and model architecture choices are
optimized for specific hardware (in their case, for a V100
GPU). On Titan X (See Table 3), their streaming perfor-
mance (which is hardware dependent) is worse.

E. Tracking Smaller Objects for Longer
We provide an analysis of our approach observing how it
improves object tracking. We wish to observe if the gains
from our method translates to detecting far-away objects for
longer period of time. We employ Argoverse-HD dataset
for our experiments which have ground truth object IDs.
Setup: We employ a Faster R-CNN as our baseline and the
tracker is fixed to IOU Tracker [2]. We additionally pair



the priors proposed by Fovea [16] for comparison. All the
detectors are executed at 0.5x scale for fair comparison.
Tracking Visualizations: We present some tracking visu-
alization in Figures 2 and 3. These visualizations motivate
us to define the following metrics.
Detecting and Tracking for Longer: We wish to under-
stand if Two-Plane Prior is able to detect an object for a
longer lifespan. This is important in autonomous driving
situations, wherein we want to detect far-away objects as
quickly as possible or any object moving away from us.
Prior tracking quality metrics such as MT% and ML%
check the ratio of tracks that are mostly tracked or mostly
lost. However, this does not capture the track length im-
provements. We propose to compare the average exten-
sion of a track (ATE) compared to the baseline detection
method. Given a track τ , Eτ can be positive or negative,
and is given by,

Eτ (m, b, gt) = (Lm − Lb)/Lgt (2)

where m is the method, b is baseline and gt is the ground
truth track, while L denotes track length. ATE is the aver-
age over tracks across all sequences. However, as the met-
ric weighs all tracks equally, which is unfair for extremely
small track lengths, thus, we only consider ground truth
tracks which are atleast 5 seconds or 150 frames long.
Detecting and Tracking Smaller Objects: Given a track,
we wish to observe if Two-Plane Prior is able to detect an
object when it’s “smaller” compared to other methods. This
is important in autonomous driving situations, wherein we
would like to detect further away objects, which would ap-
pear smaller. We wish to compute the minimum object
size tracked (MOS). We employ a proxy for object size,
size(x) = log(area(x)) where x denotes an object bound-
ing box, as the area quadratically increases. For a given
ground truth track τ , let oτ denote minimum object size of
an object, while Oτ denotes maximum object size. Let cτ
denote the minimum object size in the predicted track cur-
rently considered. We can write,

Mτ =
cτ − oτ
Oτ − oτ

(3)

Mτ is averaged over all tracks across all sequences to
obtain MOS.

F. Detection on the Commuter Bus
The bus is equipped with a Jetson AGX edge device. The
edge device communicates with a modified onboard-NVR
recording bus data from 7 cameras, two inside the bus and
five on the outside of the bus. The cameras record data at
5FPS at 720P resolution for 8 working hours of the bus,
totalling 1.08 million frames everyday. It is not feasible
to transmit and process this data on the cloud due to band-
width and compute limitations, and privacy concerns. Thus,

Method Scale AP50 AR ARS ARM ARL Latency (ms)

Faster R-CNN 0.5x 45.0 31.7 0.5 37.3 46.9 154± 8.5
Two-Plane Prior 0.5x 77.2 61.7 16.4 69.9 68.7 158± 7.5

Faster R-CNN 0.75x 58.6 41.1 10.5 45.3 54.7 240± 8.5
Two-Plane Prior 0.75x 84.5 68.3 38.8 72.9 73.3 245± 10

Baseline at higher scales

Faster R-CNN 1x 68.2 41.5 16.9 47.5 57.1 350± 15

Table 5. Rare Object Detection on the Commuter Bus: We
compare our approach with a baseline Faster R-CNN. We ob-
serve improved precision and recall over the baseline, specially for
small and medium sized objects. Do note, for ≈1FPS throughput
over five simultaneous streams, average latency of 200ms should
be achieved (however, this is not an enforced latency budget for
streaming perception [8]).

the edge device and the NVR are part of a distributed edge-
cloud infrastructure wherein the edge device is employed
to process these simultaneous streams, only relevant frames
are transmitted to cloud machines where we do further of-
fline analysis.
We analyze bus streams to build an actionable map of public
infrastructure, for instance, which areas need a trash pickup
or where does snow needs to be shovelled. We also pro-
vide real-time feedback to the bus driver, informing them
of people who may need assistance (say, on wheelchairs, or
with a stroller or service animal) getting on the bus. Thus
we employ an object detector to detect trash cans, garbage
bags and people with an assistive device. Our system has
to operate at near real-time on all streams simultaneously,
rendering cloud-transmission-turn-around infeasible.
As we employ the edge device to filter out relevant frames,
detecting all the objects in the scene is more important
than the precision and localization accuracy (a frame once,
marked “relevant”, is sent to cloud where we employ larger
models at higher resolutions without constraints).
Dataset Acquisition: For research purposes, we do record
all the data1, which is humongous (≈30 Terabytes till now)
and the instances are rare, we were able to identify 3.5K
such frames (temporally subsampled to 750) through a
semi-automatic method. Firstly, we only sampled frames
from the camera that is facing the sidewalk (people en-
tering the bus are visible). We then geo-fenced images
from bus-stop locations and major intersections on the
bus route reducing the set to 780K images. Then, we
employ off-the-shelf Detic Swin-B Large Faster R-CNN
with CLIP (for custom vocabulary) [18] and find images
with ”wheelchair”, ”stroller”, ”walker”, ”crutches”, ”cane”,
”dog”, ”animal”, ”trolley”, ”cart”, ”trash can”, ”garbage
bin”, ”garbage”, ”garbage bag” categories with a confidence
threshold of 0.25. This model has a high false positive rate

1Transmission is infeasible, HDD’s swapped physically. (Sneakernet)

https://what-if.xkcd.com/31/
https://en.wikipedia.org/wiki/Sneakernet


Figure 2. Tracking Visualization: To visualize the impact of our two-plane prior, we visualize tracks of length greater than 150 frames
tracked by both the methods for a given sequence. We plot object size w.r.t frame numbers (which denotes length). We can observe that
some objects are detected earlier and are tracked for a longer time.

Figure 3. Tracking Visualization: To visualize the impact of our two-plane prior, we visualize tracks of length greater than 150 frames
tracked by both the methods for a given sequence. We plot object size w.r.t frame numbers (which denotes length). The severe drops of the
object sizes for some tracks correspond to nearby object overtaken by our vehicle. We can observe that some objects are detected earlier
and are tracked for a longer time.

for these rare classes, and we were able to automatically
filter a set of 21K images, and manually filtered these to
yield 3.5K images. As many of these images were part of
dense temporal sequences, we further sub-sampled tempo-
rally within each sequence yielding 750 samples. We man-
ually annotated these images with object bounding boxes
and categories (”trash-can”, ”garbage-bag” and ”person-
requiring-assistance”; labels from Detic [18] were not ac-
curate). As the data is recorded over the course of a year,
we split the train and test test (70% - 30%) using the date
stamp (images taken on the same day are in the same split)
so that the model doesn’t overfit.

Hardware Platform: We set the Jetson AGX to consume
30+ Watts (MAXN configuration; no power budget). Mem-
ory is measured using the tegrastats utility, while we
use Jetpack 4.6.1 and pytorch 1.6, mmdetection 2.7 (+
mmcv 1.15) compiled for Jetson AGX to measure latency
consistently across methods (models can be compiled with
TensorRT and trained with mixed precision for additional
orthogonal improvements).

Results: In this case, just like autonomous driving, we
observe that the vanishing point is highly local. Due to
overheads of vanishing point estimate on our edge device,
we instead employ the average vanishing point, and cache



saliency S, considerably reducing our approach’s latency
and memory while maximizing accuracy. From Table 5, we
observe AR and mAP50 for the baseline (Faster R-CNN)
and our approach at 0.5x and 0.75x scales. Our method
consistently outperforms the baseline method at the same
scale, showing both better precision and recall while incur-
ring only 4ms additional latency and 22 MB memory over-
heads.

G. Qualitative Results
We present the variations of our proposed Two-Plane Per-
spective Prior across different datasets and scenarios in Fig-
ure 4. We also show case of the major failure mode of just
employing Ground Plane Prior in Fig 5. We also show a
qualitative comparison with prior work in Figures 6, 7 and
8. Lastly, we take a closer look at some of the far away
objects that were detected in Figures 9 and 10. The accom-
panying website further illustrates some of the aspects of
our method.
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Figure 4. Two-Plane Prior Based Warping: Two-Plane Prior is defined by a few parameters that describe two planar regions in the
direction of the vanishing point in the 3D scene (See Section 3.1 and 3.2 in manuscript). Firstly, we can observe the Two-Plane Prior’s
explicit dependence on the vanishing point v in the saliency maps. Next, as we can observe from grid lines (equidistant in the original
image) overlaid on top of the warped images, the extent of spatial warping varies across datasets (WALT, Argoverse-HD and Commuter
Bus), showing us the need for learnable parameter ν over prior work which do not directly model this relationship. Lastly, notice the
second plane’s effect in sampling. The second plane acts as a ”counter-balance” to reduce distortion, and the plane is faintly observable
(contrast adjusted for better visibility).
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Figure 5. Ground Plane Prior vs Two-Plane Prior: This figure demonstrates how crucial it is to model the second plane. Learning is
difficult with Ground Plane Prior (Section 5.1 in the manuscript) and causes heavy distortion of non-ground-plane regions.
Scene 1: Detector with Ground Plane Prior misses nearby tall objects because of heavy distortion. Turquoise colored bus on the right (blue
box) is detected when Two-Plane prior is used and missed with Ground Plane prior.
Scene 2: Objects not on the ground plane are missed as they are squished by the Ground Plane Prior. Yellow boxes denote the traffic lights.
All 6 traffic lights in the scene were detected when Two-Plane prior is used while Ground Plane prior missed 4 traffic lights.



Input Image FOVEA (SD)

FOVEA (SI) Two-Plane Prior

Figure 6. Qualitative Comparison with Fovea Warps on Argoverse-HD: We observe that the reliance on the vanishing point v allows
the warp to sample in the direction of the road even while making turns. Far ahead on the road, a truck (dark-blue) is not detected by
Fovea (SD or SI ), but correctly detected by our approach.



Input Image FOVEA (SD)

FOVEA (SI) Two-Plane Prior

Figure 7. Qualitative Comparison with Fovea Warps on Argoverse-HD: We observe that scale factor ν models the extent of sampling
better. Fovea (SD or SI ) misses the stop − sign (a magenta box in the middle of the image) which our method is able to detect (as it’s
larger in the warped image). Fovea (SI ) notes that in their method, regions immediately adjacent to magnified regions are often contracted
which is noticed in this case.



Input Image FOVEA (SD)
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Figure 8. Qualitative Comparison with Fovea Warps on Argoverse-HD: Failure Case: The model has misclassified a pedestrian as car
in the image warped by the Two-Plane Prior while correctly classified by Fovea (SD or SI ) (red), likely due to the presence of bicycle and
heavier distortion.
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Figure 9. Detection of Far Away Objects: Our Two-Plane Prior boosts the detection of small far-away objects at lower resolutions
(depicted image from Argoverse-HD dataset). The cropped green region in the (a) original image is (c) zoomed in while (b) shows all the
detections in the warped image. Our method detects far-away pedestrian and car.

(a)

(c)(b)

Figure 10. Detection of Far Away Objects: Our Two-Plane Prior boosts the detection of small far-away objects at lower resolutions
(depicted image from Argoverse-HD dataset). The cropped green region in the (a) original image is (c) zoomed in while (b) shows all the
detections in the warped image. Our method is able to detect the occluded car.
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