
Appendix

A. Limitations and Future Work
In the main paper, we proposed a novel evaluation

paradigm for real-time online continual learning, aimed
at simulating real-world scenarios as closely as possible.
However, we recognize that there are few limitations that
can be addressed in future work. Although ER and ER++
achieved the highest Average Online Accuracy among all
other considered methods, their performance only reached
up to 20% and 35%, respectively. This low performance
suggests that there is room for improvement with better
OCL methods. Furthermore, ER may have had an advan-
tage in this setup due to potential temporal correlations in
the CLOC dataset. One possible solution is to design new
OCL datasets that have less temporal dependency. Addi-
tionally, while ER demonstrated the best online adaptation
among other methods, it performed slightly worse in infor-
mation retention (see backward transfer in Appendix D).
Future work could explore OCL methods that can optimize
both online adaptation and information retention.

B. Pre-training Free Online Continual Learn-
ing

In real world-settings, continual learning proceeds a pre-
trained model on locally annotated available data; as re-
ported in all previous experiments in the main paper. How-
ever, we consider in this section a setting where models are
continuously trained without any pre-training. We repeat
our experiments on the CLOC dataset while training the
ResNet50 backbone from scratch. We find that in this set-
ting, a learning rate of 5× 10−2 works best for all methods
except PoLRS, which works better with a learning rate of
10−2.

Following the evaluation grouping we use in the main
paper, we present the results in three figures: Fast Stream
(Figure 1), Fast Stream with Data Normalization (Figure
2), and Slow Stream (Figure 3). We note that the results
without pre-training reveal a similar conclusion to the main
paper, where the simple baseline (ER) outperforms more ex-
pensive OCL specific methods. Notably, ACE and ER are
as efficient as each other, and they both consistently outper-
form the more expensive methods. Interestingly, ACE only
very marginally outperforms ER despite that ER does not
use any specific OCL technique.

C. Small-Scale Experiments
In this section, we test whether previous methods work

well under real-time evaluation of continual learning if the
dataset used is unrealistically small. To do this, we re-
peat the fast stream and slow stream experiments on CI-
FAR10 and CIFAR100 datasets, which many of the consid-

0 150k 300k
Time Steps

5

10

15

A
vg

.
O

nl
in

e
A

cc
ur

ac
y

(%
)

ER
PoLRS

ACE
MIR

LwF
GSS

RWalk

Figure 1. Fast Stream Evaluation (Pre-training Free). Consis-
tent with the main paper experiments, the most efficient methods,
ER and ACE, significantly outperform the other considered meth-
ods, even when the backbone is trained from scratch.

ered methods were originally tested on. We randomly shuf-
fle these datasets without task boundaries constructing an
online stream and sequentially train models over the stream
in a single pass.
Implementation Details. For all experiments on CIFAR10
and CIFAR100, the stream reveals 10 images per time step
which are augmented with another 10 images sampled from
a memory. This procedure creates a training minibatch of 20
samples per time step. Moreover, we set the memory size to
100. All models use a reduced ResNet18 as a backbone [6]
where we use SGD for optimizing models. For learning
rate selection, we cross-validate on a held-out 5% of each
dataset. In CIFAR10, we find the following learning rate
values to work best:

• 10−3 for ER, ACE, LwF and RWalk

• 5× 10−3 for PoLRS, MIR, and GSS

As for CIFAR100, we use these learning rate values:

• 10−3 for ER, ACE, PoLRS

• 5× 10−3 for LwF, RWalk, GSS

• 10−2 for MIR

C.1. Fast Stream

Recall that, for ease of comparison, we assume that ER
has a computational complexity that matches the stream
speed and, thus, is able to train on all incoming samples
in the fast stream. As a result, more computationally ex-
pensive methods than ER lag behind the stream. This delay



0 150k 300k
Time Steps

5

10

15

A
vg

.
O

nl
in

e
A

cc
ur

ac
y

(%
) LwF (Delay = 0.33)

150k 300k
Time Steps

RWalk (Delay = 1)

150k 300k
Time Steps

MIR (Delay = 1.5)

ER (Delay = 0) ER-- OCL Method

150k 300k
Time Steps

PoLRS (Delay = 2)

150k 300k
Time Steps

GSS (Delay = 5)

Figure 2. Fast Stream - Training Data Normalization (Pre-training Free). We compare each method against ER and its delayed version
ER--. ER-- performs extra gradient steps per time step to match the delay of the compared-against method, so it trains on fewer samples
than ER. We highlight that even when no pre-training is deployed, ER-- outperforms all considered methods.

0 150k 300k
Time Steps

0

5

10

15

20

25

30

A
vg

.
O

nl
in

e
A

cc
ur

ac
y

(%
) LwF (CS = 1.33)

150k 300k
Time Steps

RWalk (CS = 2)

150k 300k
Time Steps

MIR (CS = 2.5)

ER ER++ OCL Method

150k 300k
Time Steps

PoLRS (CS = 3)

150k 300k
Time Steps

GSS (CS = 6)

Figure 3. Slow Stream Evaluation (Pre-training Free). We compare each method against ER and ER++, which performs extra gradient
steps per time step to match the complexity CS of the compared-against method. ER++ outperforms all the considered methods, even
when the backbone is not pre-trained.

forces these methods to skip some incoming samples, where
they effectively train on only a subset of the stream sam-
ples. In Table 1, we report the performance of considered
OCL methods when evaluated on CIFAR10 and CIFAR100
datasets given a fast stream. We note that even when us-
ing small-scale datasets, ACE and ER outperform all other
considered methods in the practical, fast stream setting. Re-
markably, ACE performance is only marginally better than
ER by less than 1.5% on both datasets even though ER does
not do anything specific for continual learning.

C.2. Slow Stream

In this setting, similar to the main paper, the slow stream
is as slow as the more expensive OCL method. That is to
say, methods in this stream are able to train on all stream
samples. Also recall that since methods have different train-
ing complexities in this stream, we use the modified base-
line ER++ for a fair comparison. ER++ matches the com-
plexity of each compared-against method by performing ad-
ditional gradient updates.

We show the results of the slow stream evaluation in
Table 2 when considering small-scale datasets such as CI-

Method Average Online Accuracy (%)

CIFAR10 CIFAR100

ER 51.60 13.62
ACE 53.05 14.42
LwF 49.65 12.41
RWalk 43.90 9.36
PoLRS 41.25 6.92
MIR 43.55 10.57
GSS 33.67 6.56

Table 1. Small-Scale Experiments - Fast Stream. We repeat the
fast stream experiments on the small-scale datasets CIFAR10 and
CIFAR100. We notice that regardless of the size of the dataset,
ACE and ER outperforms all the considered methods.

FAR10 and CIFAR100. Similar to the slow stream results
on the CLOC dataset, ER++ outperforms all considered
OCL methods when evaluated on CIFAR10. As for CI-
FAR100, ER++ also outperforms all considered methods
except LwF and MIR, which are only slightly better than
ER++ by no more than 0.36%.



CS Method Average Online Accuracy (%)

CIFAR10 CIFAR100

4/3
LwF 52.48 15.14
ER++ 54.09 14.79

2
RWalk 51.17 14.56
ER++ 56.71 16.35

5/2
MIR 53.15 17.73
ER++ 58.03 17.37

3
PoLRS 49.51 12.41
ER++ 59.52 18.45

6
GSS 53.90 16.45
ER++ 59.76 17.09

Table 2. Small-Scale Experiments - Slow Stream. We repeat
the slow stream experiments on the small-scale datasets CIFAR10
and CIFAR100. We note that in almost all cases, ER++ outper-
forms the compared-against method. The only exceptions are LwF
and MIR, and only when evaluated on CIFAR100. Even then,
they have marginal gains over their corresponding simple base-
line ER++, which indicates the need to develop better and more
efficient methods for online continual learning.

D. Performance on Held-out Samples

In the main paper, we focused on the Average Online
Accuracy as the main evaluation metric since it measures
the adaptation to the next training batch (i.e. near future
distribution), which is a highly desirable property in real-
time streams with quick distribution changes. In this sec-
tion, we consider two other evaluation metrics for continual
learning, namely backward transfer and forward transfer.
The backward transfer metric measures forgetting on past
distributions, while the forward transfer evaluates models’
adaptation to future distributions on held-out samples. It is
important to note that forward transfer differs from Aver-
age Online Accuracy in that it evaluates the performance on
held-out samples instead of future unseen training samples.
Additionally, it monitors the performance on distributions
that are far into the future, rather than the distribution of the
next batch only.

To measure backward transfer and forward transfer, we
uniformly sample and hold-out 1% of the CLOC dataset
from different time steps. The backward transfer of the final
model obtained at the end of the stream steps is measured
by computing the average accuracy on the unseen samples
from past timesteps at every time step. Similarly, the for-
ward transfer is evaluated by measuring the average accu-
racy on the unseen samples starting from the timestamp at
which the model was obtained to the end of the stream.
Following CLOC, we measure the forward transfer for the
model saved at 1/3 and 2/3 of the stream.

Figures 4 and 5 show the backward and forward trans-
fer results in the slow and fast streams, respectively. We

observe that all OCL methods perform similarly to the ER
method, with only a slight advantage for some methods. For
example, in the slow stream, although GSS and MIR require
6 and 2.5 times the computational cost of ER, respectively,
they only outperform ER in backward transfer by 1.5% and
0.7%, respectively. Similarly, in the slow stream, they out-
perform ER in forward transfer (at 1/3 of the stream) by
only 0.4% and 0.5%, respectively. In the fast stream re-
sults shown in Figure 4, MIR and GSS also slightly out-
performed ER, even though they suffered from some train-
ing delay, indicating that they have a slight advantage in
the forward/backward transfer metrics that they were op-
timized for. Importantly, this slight increase in GSS, and
MIR performance comes at the cost of lower Average On-
line Accuracy, which is crucial in real-time continual learn-
ing. When considering Average Online Accuracy on both
the slow stream and fast stream, the role of training effi-
ciency becomes apparent.

It is worth noting that the backward transfer evaluation
metric is slightly different from the objective of real-time
online continual learning. In offline continual learning,
methods are typically evaluated at the end of the stream on a
held-out test set. However, this evaluation setup is irrelevant
to real-time online continual learning, where streams con-
stantly undergo rapid distribution shifts. Due to this stream
dynamic, performance on samples from previous distribu-
tions is not a good indicator of whether models will make
correct predictions on new incoming samples. This is be-
cause, in OCL with a naturally distributed stream, only the
current stream samples are relevant for evaluation. For ex-
ample, consider a naturally distributed stream revealing im-
ages of electronic devices. It is less likely for a stream to
reveal images of 1995 devices as opposed to images of de-
vices from 2022. This is the classical motivation behind on-
line continual learning from a naturally distributed stream
as opposed to offline continual learning.

As for the forward transfer metric, we note that it may
not be an accurate indicator of model’s ability to predict fu-
ture samples, especially in streams with rapidly changing
distributions. Since forward transfer is calculated as a run-
ning average of accuracy over future distributions, it assigns
equal weights to all future samples. However, this might be
misleading in dynamic, real-time streams where near future
distributions are more likely to be observed than those in
the far future. In other words, a model that performs well
on forward transfer may still struggle to adapt to the near
future distribution. Therefore, while forward transfer can
be a helpful metric in assessing a model’s adaptability to
future distributions, it should be interpreted with caution in
real-time streams and supplemented with other evaluation
metrics that focus on the near future distribution, such as
the Average Online Accuracy.



0.0 0.5 1.0 1.5 2.0 2.5
Time in history(s) ×108

4

5

6

7

8

B
ac

kw
ar

d
Tr

an
sf

er
(%

)

(a)

0.0 0.5 1.0 1.5
Time in future(s) ×108

4

5

6

7

8

Fo
rw

ar
d

Tr
an

sf
er

(%
)

(b)

ER ACE LwF RWalk PoLRS MIR GSS

0.0 0.5 1.0
Time in future(s) ×108

4

5

6

7

8

Fo
rw

ar
d

Tr
an

sf
er

(%
)

(c)

Figure 4. Performance on Held-out Samples - Fast Stream. (a) Backward transfer for a model obtained at the end of the stream. (b, c)
Forward transfer for a model obtained at 1/3 and 2/3 of the stream respectively. We note that all methods have comparable performance to
ER in both backward and forward transfer metrics with only a maximum gap of 1.1% across all plots.

0.0 0.5 1.0 1.5 2.0 2.5
Time in history(s) ×108

4

5

6

7

8

B
ac

kw
ar

d
Tr

an
sf

er
(%

)

(a)

0.0 0.5 1.0 1.5
Time in future(s) ×108

4

5

6

7

Fo
rw

ar
d

Tr
an

sf
er

(%
)

(b)

ER LwF RWalk PoLRS MIR GSS

0.0 0.5 1.0
Time in future(s) ×108

4

5

6

7

Fo
rw

ar
d

Tr
an

sf
er

(%
)

(c)

Figure 5. Performance on Held-out Samples - Slow Stream. (a) Backward transfer for a model obtained at the end of the stream. (b, c)
Forward transfer for a model obtained at 1/3 and 2/3 of the stream respectively. We observe that all methods have comparable performance
to ER in both backward and forward transfer metrics. Even the most computationally intensive methods, namely GSS, and MIR, only
outperform ER in backward/forward transfer by a maximum of 1.5%, which are the metrics they were optimized for. However, this minor
advantage comes at the cost of much lower Average Online Accuracy. Note the ACE is not included in the plots because it has a training
complexity of 1, and therefore, it was not evaluated in the slow stream.

E. A Faster Stream

In the fast stream experiments reported in the main
manuscript, we assumed that ER is as fast as the stream for
ease of comparison. As a result, ER had a stream-model rel-
ative complexity of CS(ER) = 1, allowing it to train on the
entire data stream. In contrast, methods with higher com-
putational complexity than ER had a stream-model relative
complexity larger than 1, leading to some training delay.
One could argue that our setup gave ER an advantage by
normalizing the stream speed to it. In this section, we ex-
plore a setting where the stream is faster than all evaluated
methods.

We repeat the fast stream experiments but with a stream
speed that is twice as fast as ER. Under this new stream
speed, we outline in Table 3 the corresponding training
complexity and delay for each considered method. In Fig-
ure 6, we report the performance of considered OCL meth-
ods in the faster stream. Even when the stream is faster than

CL Strategy Method(A) CS(A) Delay

Experience Replay ER 2 1

Regularization
ACE 2 1
LwF 8/3 3/2∗

RWalk 4 3

LR Scheduler PoLRS 6 5

Sampling Strategies MIR 5 4
GSS 12 11

Table 3. A Faster Stream Evaluation - Training complexity and
delay of considered OCL methods when the stream speed is
twice as fast as ER. ∗Note that we rounded down the complexity
of LwF from 1.67 to 1.5 for ease of implementation.

ER, we observe similar findings to the main manuscript. In
particular, ER still outperforms all other considered meth-
ods.



0 100k 200k 300k
Time Steps

4

8

12

16
A

vg
.

O
nl

in
e

A
cc

ur
ac

y
(%

)

ER
PoLRS

ACE
MIR

LwF
GSS

RWalk

Figure 6. A Faster Stream Evaluation. We set the stream speed
to twice as fast as ER. Even when the stream speed is faster than
ER, ER still outperforms all other considered methods, similar to
the main manuscript experiments.

F. A Slower Stream

In the slow stream experiments presented in the main pa-
per, we demonstrate that ER++ outperforms all compared
OCL methods. These findings raise the following ques-
tion: What if the stream is slowed down to the point where
more computationally expensive methods can perform ad-
ditional gradient steps? To explore this question, we allow
each method to perform two Gradient Descent (GD) steps
per time step. Accordingly, we adjust ER++ to match the
complexity of the boosted version of each method shown
in Table 4. Note that performing two GD steps on LwF,
RWalk, and PoLRS results in doubling their original com-
plexity. In contrast, making an additional GD step on MIR
and GSS only increases their complexity by one. This is
because LwF, RWalk, and PoLRS require additional back-
ward and/or forward passes with each GD step, while the
sampling-based approaches, MIR and GSS, only require
them with each new incoming data.

In Figure 7, we report the performance of each OCL
method with one and two GD steps per time step, where
the results for one GD step are shown for reference only.
We compare the boosted version of each method against
ER and its corresponding ER++. Consistent with the slow
stream results presented in the main paper, ER++ outper-
forms all the considered OCL methods. Compared to other
methods, LwF has the smallest accuracy gap to ER++, sug-
gesting that it is a highly efficient method. Although adding
an extra GD step to GSS and MIR has reduced the previous
gap to ER++ from 17% to 14% and 11% to 10%, respec-
tively, both methods lag behind LwF, which is a less compu-

CL Strategy Method(A) CS(A)

Regularization LwF 5/2∗

RWalk 4

LR Scheduler PoLRS 6

Sampling Strategies MIR 7/2∗

GSS 7∗

Table 4. A Slower Stream Evaluation - Training complexity
of considered OCL methods when each method is performing
two GD steps per time step. ∗Note that complexities of these
methods were rounded down for ease of implementation.

LR 0.001 0.005 0.01 0.05

ER 8.2 10.9 9.7 4.4
ACE 8.1 8.8 7.9 3.4
LwF 8.3 11.1 10.0 4.3
RWalk 8.1 11.0 10.3 4.4
PoLRS 10.8 10.6 9.3 3.9
MIR 8.0 10.8 8.5 3.1
GSS 7.5 9.8 9.0 3.6

Table 5. Learning Rate Grid Search. We perform cross-
validation on each of the OCL methods considered, testing them
on four different learning rate values. The Average Online Accu-
racy of the chosen learning rate value is denoted in bold for each
method.

tationally expensive method. In summary, the slower stream
results indicate that ER++ remains the optimal choice for
achieving the highest Average Online Accuracy while us-
ing computational resources efficiently.

G. Learning Rate Grid Search
In order to determine the best learning rate for the meth-

ods in the slow and fast streams discussed in the main
manuscript, we conduct a gird search across 4 values:
{0.001, 0.005, 0.01, 0.05}, which we report in Table 5. We
note that in practice, the stream speed is often unknown dur-
ing training. Since the training delay is determined by the
unknown stream speed, we conduct the grid search while
assuming no training delay for all methods.



0 150k 300k
Time Steps

10

15

20

25

30

35

A
vg

.
O

nl
in

e
A

cc
ur

ac
y

(%
) LwF (CS = 2.5)

150k 300k
Time Steps

RWalk (CS = 4)

150k 300k
Time Steps

MIR (CS = 3.5)

ER ER++ OCL Method (1 GD step) OCL Method (2 GD steps)

150k 300k
Time Steps

PoLRS (CS = 6)

150k 300k
Time Steps

GSS (CS = 7)

Figure 7. A Slower Stream Evaluation. We enable each OCL method to perform two GD steps per time step. We compare each method
against ER and ER++, which performs extra GD steps per time step to match the complexity CS of the compared-against method. For
reference, we also show the performance of each OCL method with only a single GD step. Even when OCL methods perform additional
GD steps, ER++ still outperforms them all.


	. Limitations and Future Work
	. Pre-training Free Online Continual Learning
	. Small-Scale Experiments
	. Fast Stream
	. Slow Stream

	. Performance on Held-out Samples
	. A Faster Stream
	. A Slower Stream
	. Learning Rate Grid Search

