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Figure 1. Our custom capture set-up. Participants are seated on a height-adjustable chair. A screen presents instructions for the 23 different
expression to perform. Next to the 3D scans (right), the scanners also capture 1.3 mega pixel RGB images. This examples shows the
fidelity of the laser scanners.

1. Overview

Our supplementary material is structured as follows: In
section 2 we provide additional details about our capture
set-up and dataset.
We provide details on the different approaches to fit point
clouds for our model and all baselines in Section 3. Addi-
tionally, we provide results on reconstructing an unknown
identity and expression from a single view depth map in
Section 3.3 and provide a proof-of-concept tracking algo-
rithm for a commodity depth sensor in Section 3.4.
Furthermore, we provide implementation details in Sec-
tion 4. Finally, we evaluate the robustness of our model
w.r.t. noise and sparsity in section 5.
For additional visual results, we refer to our supplemental
video. All of our code and data will be available for research
purposes1.

1https://simongiebenhain.github.io/NPHM

2. Dataset

High quality data is of fundamental importance for every
learning algorithm. We therefore decided to capture a high
quality dataset of 3D head scans. In the following, we pro-
vide details about our custom capture set-up and the dataset.

For more samples of our dataset, we refer to Figure 12.

2.1. Capture Set-Up

Figure 1 shows our custom capture set-up, which is built
inside of an aluminium cube with an edge length of two
meters. We use a robotic actuator2 to rotate an inverted U-
shape around a participant’s head.

We place two Artec Eva scanners opposite of each other,
with complementary viewing angles on the ends of the in-
verted U-shape. The height and angles of the scanners are

2We use an acuator of the TUAKA series of Sumitomot Drive
Technologies: https://us.sumitomodrive.com/en- us/
actuators

https://simongiebenhain.github.io/NPHM
https://us.sumitomodrive.com/en-us/actuators
https://us.sumitomodrive.com/en-us/actuators
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Figure 2. More identity fitting comparisons with Basel Face Model [11], a global PCA [2], ImFace [16] and an ImFace that is trained on
our data (marked with *). These are the remaining baselines that are missing in Figure 5 of the main paper.

adjusted to obtain an optimal coverage, while avoiding ex-
treme step angles which decrease scanning accuracy.

2.2. Details

During the six seconds of a 360° rotation, each scanner
roughly produces 95 frames. Each frame captures range
measurements obtained by analyzing a structured light pro-
jection using a stereo camera pair. Additionally, a third
camera captures RGB images every fifth frame, as depicted
in Figure 1. Note that we currently do not use the captured
RGB input, except for facial landmark detection.

We process the individual 3D measurements of each
frame using the provided software of Artec. First, we align
the individual frames of the upper and lower scanner using
a global registration algorithm. The individual frames are
then fused into a single 3D mesh. Subsequently, we use
a hole-filling algorithm and remove disconnected parts, for
simplicity.

2.3. Expressions

As mentioned in the main paper, our 23 facial expres-
sions are adapted from FaceWarehouse [3]. We illustrate
the different expressions that we capture in figure 13. As

mentioned before, the neutral, open-mouthed expression is
of special importance since it serves as our canonical ex-
pression.

2.4. GDPR

Due to the sensitivity of the captured data, all partici-
pants in our dataset signed an agreement form compliant
with GDPR. Please note that GDPR compliance includes
the right for every participant to request the timely deletion
of their data. We will enforce these rights in the distribution
of our dataset.

3. Fitting

The following provides a description of how we used the
learned prior of our model and all baselines to fit the single
view depth maps.
Additionally, we show qualitative results of the remaining
baselines for the identity and expression fitting experiment
in Figure 2 and 3, respectively.
Furthermore, we present quantitative and qualitative results
for joint identity and expression reconstruction based on a
single depth map in Section 3.3.
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Figure 3. More expression fitting comparisons with Basel Face Model [11], a global PCA [2], ImFace [16] and an ImFace that is trained
on our data (marked with *). These are the remaining baselines that are missing in Figure 6 of the main paper.

Pretrained Models Due to the difference in neutral ex-
pressions between our data and the pretrained baselines, i.e.
BFM [11], FLAME [8] and ImFace [16], we cannot fit the
identity in an isolated fashion, since that would be unfair.
To mitigate this, we fit all these models jointly to all expres-
sions of a person. Additionally, we provide facial landmarks
and optimize for equation (1) of the main paper. The results
are then used to evaluate both the identity and expression
fitting experiments.

3.1. Identity Fitting

Given a single view depth map Xp ⊂ R3 of an unknown
person in neutral facial expression, we optimize for an iden-
tity code zid, as well as an expression code zex. We include
the latter in the optimization, in order to account for minor
deviations from a perfect canonical facial expression.

PCA-Based Models For this purpose, we again optimize
for equation (1) but only provide the neutral depth map and
corresponding landmarks.

ImFace Since ImFace utilizes backward deformations,
the observed points Xp in posed space can be backward-
warped into canonical space, where Fid can act on them.
Therefore, the fitting task can be formulated naturally to
minimize:∑

xp∈X
|Fid

(
F←ex (xp, z

ex), zid) |+ λR1(z
id, zex), (1)

where R1 includes the same regularization terms used in
ImFace [16]. We write F←ex to denote the backward de-
formation field of ImFace and Fid for its SDF in canonical
space. (Please note that for the sake of this discussion, we
ignore the fact that their Fid is composed of another defor-
mation field and a template SDF.) We use their official code
and hyperparameters.

NPM and NPHM For forward deformation models, for-
mulating a loss to jointly optimize for zid and zex is less
straght forward. The authors of NPM [9] proposed a slightly
convoluted formulation using a TSDF grid estimated from
the depth observations. Instead, we resort to the iterative
root finding scheme proposed in SNARF [4], that inverts the
forward deformation. Given a point xp ∈ X in posed space,
its corresponding points in canonical space is its preimage
under F→ex . The authors of [4] propose to solve for

xc = argmin
x

|xp − F→ex (x, z
ex)| (2)

iteratively to establish a corresponding point xc in canoni-
cal space. In order to avoid backpropagation through this
iterative procedure, they utilize analytical gradients instead,
which can be derived as described in [1]. Using these cor-
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Figure 4. Results when fitting both identity and expression codes jointly on a single depth map. We compare against ImFace [16], an
ImFace that is trained on our data (marked with *), and NPM [9].

respondences we can then resort to the loss in equation 1∑
xp∈X

|Fid
(
xc, z

id) | +
λfit

glob∥zid
glob∥22+λfit

ex∥zex∥22+λfit
loc

K∑
k=1

∥zid
k ∥22+λfit

syLsy,

(3)

where xc replaces the result of the backward deformation.
The second line regularizes all latent codes, as well as the
difference between symmetric facial regions. For NPM we
simply omit the local latent code and symmetry regular-
ization terms. Furthermore, we did not observe topolog-
ical issues and therefore stick with a single initialization
xinit = xp for the iterative root finding.

For our ablation in Section 5.3 of the main paper, as well
as, Section 5, we isolate the expression component com-
pletely and replace xc with xp, assuming that the observed
pose is perfectly neutral.

3.2. Expression Fitting

In our expression fitting experiment, we investigate the
models’ performance to obtain zid and {zex

s }Ss=1, given S
observations {Xs

p}Ss=1 in posed space, where S is the total
number of scans per person.

For our PCA-based baselines, as well as both variants of
ImFace, we jointly optimize for the parameters of interest
using the same losses as in the previous section.

For the forward deformation models, we find the zid from
the identity fitting already provides a good estimate. For
simplicity, we then keep zid fixed and only optimize for
{zex

s }Ss=1 using equation 3.

3.3. Single-Expression Fitting

The expression fitting task in the main paper attempts
to evaluate the expressiveness of each model’s expression
space by constraining the identity codes to remain the same
over all scans of one person.



we present another experiment that aims to reconstruct
zid and zex jointly given only one depth map of an unknown
person in arbitrary expression.

Table 1 reports quantitative numbers that further support
the effectiveness of the proposed model.

Method L1-Chamfer ↓ N. C. ↑ F-Score@1.5 ↑
ImFace [16] 0.375e−2 0.966 0.825
ImFace∗ [16] 0.320e−2 0.972 0.879
NPM [9] 0.243e−2 0.969 0.928
Ours 0.207e−2 0.974 0.947

* trained on our data

Table 1. Fitting performance from a single depth map of unknown
identity and unknown expression.

Hyperparameters for NPM and NPHM We optimize
Equation 3 using the Adam optimizer for 700 iterations.
The optimization procedure starts with a learning rate of
0.01 and is decayed by a factor of 10 after epochs 200, 350,
and 500. For our model we use λfit

glob = 0.05, λfit
loc = 0.05

and λfit
ex = 0.003 to regularize the global and local identity

and expression components, respectively. Additionally, we
encourage symmetry λfit

sy = 1.0 for the first half of itera-
tions and then set λfit

sy = 0.0. Additionally, we divide λfit
loc

and λfit
glob by a factor of 5 at epochs 200 and 500, such that

the model first learns the coarse facial expression before fo-
cusing on the details of the identity.
For NPM we use the exact same hyperparameters as for
our model. However, the local regularization and symmetry
prior have no effect.

3.4. Real-World Tracking

Additionally, we evaluate our model in a real-world face
tracking scenario. For this purpose, we fit our model against
a depth video captured with a Kinect Azure, a commodity
depth sensor. Figure 5 shows our results of a single frame
and a comparison to the FLAME model. For the full track-
ing results, we refer to our supplemental video.

Depth Map FLAME [8] Ours RGB

Figure 5. Real-world tracking. For a single frame, we show from
left to right: the depth map obtained from a commodity depth sen-
sor, FLAME, and our reconstructions, and an image as reference.

For this proof of concept, we simply optimize for zid us-
ing a single frame and subsequently optimize for head pose
and expression parameters for each frame. Additionally,
we include a total variation prior along the temporal axis
over estimated head pose and expression parameters. More
specifically, we add

LTV (ϕ) =

T∑
t=1

∥ϕ(t+ 1)− ϕ(t)∥ (4)

to optimization problem, where ϕ(t) denotes any of the
time dependent optimization parameters, i.e. expression and
pose.

To coarsely align the coordinates system of the back-
projected depth map into our canonical coordinate system,
we calculate the similarity transform using [14] from de-
tected landmarks to the landmarks of the average FLAME
face (note that our model shares the coordinate system of
FLAME).

To further guide the optimization, we also include land-
marks at the mouth and eye corners, as well as on the top
and bottom of the lips, which we denote as at ∈ R8×3 for
each time step.

First, we utilize the detected landmarks for the initial
identity fitting on a chosen frame tcan. Here the landmarks
serve as additional supervision for zid

glob, by including the
term

∥MLPpos(z
id
glob)− atcan∥1. (5)

In this stage, we additionally estimate normals using a Sobel
filter and use them as additional supervision signal, as in
Equation 10.

During expression fitting, we incorporated the eight fa-
cial landmarks as direct supervision for the forward defor-
mation network:

T∑
t=1

∥Fex(MLPpos(z
id
glob), z

ex
t , z

id
glob)− at∥1. (6)

4. Implementation Details

We implement our approach – including registration,
training, and inference – in PyTorch and, unless otherwise
mentioned, run all heavy computations on the GPU, for
which we use an Nvidia GTX 3090.

4.1. Non-Rigid Registration

In Equations (1) and (2) of the main paper, we use the
point-to-plane distance d(v,S) from a point v ∈ R3 to a
surface S ⊂ R3. To make our energy terms more robust,
we filter this distance based on a distance δd and normal
threshold δn, such that



d∗(v,S) =


0, if d(v,S) > δd,

0, if ⟨n(v), n(s)⟩ > δn,

d(v,S), otherwise,
(7)

where
d(v,S) = min

s∈S
|⟨v − s, n(s)⟩| (8)

is the unfiltered point to plane distance and n(v) and n(s)
denote the vertex normals of v in the template mesh and the
normals of its nearest neighbor in the target S, respectively.

FLAME Fitting We regularize our optimization in
FLAME parameter space using

R(Φj) = λid
∥zid∥22
20

+ λex∥zexj∥22 + λjaw∥θj∥22
+ λrigid(∥Rj∥22 + ∥tj∥22). (9)

We use λid = 1/5000, λex = 1/3000 to regularize the
identity and expression parameters respectively. For the jaw
angle and the rigid parameters, we regularize with λjaw =
1/10 and λrigid = 1/10. Since the point-to-plane distance
initially gives an unreliable signal, despite our filtering we
down-weight the point-to-plane distance with λd = 1/15
for the first 300 iterations. For all remaining iterations of
the 2000 iterations, we set λd = 1. We solve Equation (1)
using the Adam [7] optimizer with a learning rate of 4e−3,
which is decayed by a factor of 5 for the final 500 iterations.

Finetuning We exponentially decay the weight λARAP of
the ARAP [13] term with a factor of 0.99. We start with
λARAP = 10.0, but do not decay below λARAP = 0.1. On
average our implementation converges after 400-500 itera-
tions of the L-BFGS optimizer and takes roughly 4 minutes
on a single Nvidia 1080 GPU.

Since both the FLAME fitting and finetuning require
a large number of nearest neighbor queries between ver-
tices of the optimized mesh and the target mesh, we utilize
FAISS [6], which provides efficient, GPU-optimized search
indices for approximate similarity search.

4.2. Data Preparation and Training

Identity Training To train Fid, we use the loss

LIGR =
∑
x∈δX

λs|Fid(x)|+ λs (1−⟨∇Fid(x), n(x)⟩)

+
∑

x∈X∪δX

λeik(∥∇Fid(x)|2−1)

+
∑
x∈X

λ0exp(−α|Fid(x)|)

(10)

introduced in [5] and [12], where we omit the condi-
tioning of Fid for simplicity. Here δX denotes samples on
the surface and X denotes samples in space. We choose
λs = 2, λn = 0.3, λeik = 0.1 and λ0 = 0.01. For the ad-
ditional hyperparameters mentioned in Equation (11)we set
λid

reg = 0.005, λa = 7.5 and λsy = 0.005.
Furthermore, we train for 15, 000 epochs with a learning

rate of 0.0005 and 0.001 for the network parameters and la-
tent codes, respectively. Both learning rates are decayed by
a factor of 0.5 every 3, 000 epochs. We use a batch size of
16 and |δX| = 500 points sampled on the surface. Samples
X are obtained by adding Gaussian noise with σ = 0.01 to
surface points and adding some points sampled uniformly
in a bounding box. Additionally, we use gradient clipping
with a cut-off value of 0.1 and weight decay with a factor
of 0.01.

Since this loss only requires samples on the surface di-
rectly, we precompute 2, 000, 000 points sampled uniformly
on the surface of the 3D scans, after removing the lower part
of the scan, which we determine using a plane spanned by
three vertices on the neck of our registered template mesh.
Since our focus lies on the front part of the face, 80% of
these points are sampled on the front and 20% on the back
and neck. The frontal area is determined by a region on our
registered meshes, which covers the face, ears, and fore-
head. We additionally sample surface normals.

Training the identity network takes about 12 hours until
convergence on a single GPU.

Expression Training For the training of Fex, we follow
NPMs [9] and precompute samples of the deformation field,
which can be used for direct supervision of Fex.

More specifically, let M and M′ be a neutral and ex-
pression scan. For a point x ∈ M, we determine the corre-
sponding point x′ ∈ M′ using barycentric coordinates and
construct samples of the deformation field δ(x) = x′ − x.
While strictly speaking the deformation is only defined for
points on the surface, we compute field values close to
the surface by offsetting along the normal direction, i.e.
δ(x + αn(x)) = x′ + αn(x′) − (x + αn(x)), where we
sample α ∼ N (0, τiI3) twice with standard deviations
τ1 = 0.02 and τ2 = 0.004. Overall, we sample 2, 000, 000
points per expression.

For the expression training we use λex
reg = 5e−5 and a

learning rate of 5e−4 and 1e−3 for the network and latent
codes, respectively. We train for 2, 000 epochs with a learn-
ing rate decay of 0.5 every 600 epochs, gradient clipping at
0.025 and weight decay strength 5e−4. We use 1000 sam-
ples to compute Lex and a batch size of 32.

Training the expression network until convergence takes
about 8 hours on a single GPU.



Figure 6. Anchor Layout: Each anchor is assigned a unique color, except for symmetric pairs which share colors. We calculate vertex
colors by blending in the same fashion, as for the ensemble of local MLPs. Consequently, the colors show the influence that each local
MLP has on its surrounding. Black denotes the color of f0. Anchor points were chosen as vertices of the average over all registrations.

4.3. Architectural Details

4.3.1 NPMs

In the main paper, we compare our proposed method against
our implementation of NPMs [9]. Instead of the proposed
ensemble of local MLPs, NPMs use the original architec-
ture of DeepSDF [10] with 8 layers, a hidden dimensional-
ity of 1024, and Zid = 512 dimensions for the latent vector
for Fid.

The expression latent dimension is dex = 200 and the
MLP has 6 hidden layers with 512 hidden units. We use
identical settings for NPHM.

4.3.2 NPHMs

Our default choice for the number of anchor points is K =
39, of which Ksymm = 16 are symmetric. This leads to
7 anchor points lying directly on the symmetry axis, and
hence parameters of 16 + 7 = 23 local DeepSDFs have
to be optimized. Figure 6 depicts the arrangement of the
anchor points.

The identity latent space is composed of the shared
global part zid

glob ∈ Rdglob with dglob = 64 and local latent
vectors zid

k ∈ Rdloc with dloc = 32. Our local MLPs have
4 hidden layers with 200 hidden units each and follow the
DeepSDF [10] architecture. Note that the total number of
latent identity dimensions did = (K + 1) ∗ dloc + dglob =
1344.

Furthermore, we use σ = 0.1 and c = e−0.2/σ
2

to blend
the ensemble of local MLPs. Figure 6 illustrates the result-
ing influence that the individual local MLPs have on the
final prediction.

Anchor Points In the main paper, we ablated the num-
ber of face anchor points. Figure 6 shows a comparison of
the different anchor layouts that we ablated. For a lower
number of anchors, we increase dloc such that did is roughly
preserved.

For the ablation of our symmetry prior, we keep the exact
same anchor layout; however, do not share network weights
for symmetric anchors and do not mirror coordinates.

4.4. Metrics

Since we quantitatively compare models that represent
vastly different regions of the human head, we restrict the
calculations of our metrics to the face region. This also
aligns with the fact, that each model only observes a sin-
gle, frontal depth map, i.e. other parts of the head can only
be estimated roughly.

To this end, we determine the facial area by all points
which are closer than 1cm to a region defined on our reg-
istered template mesh. Within this region, we sample
1,000,000 points with their corresponding normals on the
ground truth as well as on each reconstruction. Using these
sampled points and normals, we compute all of our metrics.

Please note, that this evaluation does not account for the
fact that reconstructions of closed-mouth expressions might
contain the inner part of the mouth. The inner part of the
mouth is not visible by the 3D Scanners and hence is miss-
ing in the ground truth. This especially is a disadvantage for
forward deformation models, since they reconstruct large
parts of the inner mouth region. To account for this one
might have to exclude sampled points in the reconstructions
that are not visible, e.g. by rendering depth images from
multiple views and backprojecting them to 3D.



5. Additional Ablations
The experiments in the main paper were restricted to sin-

gle view depth maps with 5000 points. Here, we present
a thorough evaluation with respect to the number of input
points and with respect to artificial Gaussian noise.

Number of Points: Figure 7 shows how the number of
observed points effect the reconstructions quantitatively.
We evaluate on 250, 500, 1000, 2500, 5000, and 10000
points, respectively. Figure 10 illustrates the effect quali-
tatively.

Noise: Similarly, we ablate against additive Gaussian
noise with standard deviations of 0.0mm, 0.3mm, 0.75mm
and 1.5mm. Quantitative and qualitative results are pre-
sented in Figures 8 and 9, respectively.
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Figure 7. Ablation with respect to the number of points in the input
point cloud.
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Figure 8. Robustness of our method to noise in the input point
cloud.

5.1. Deformation Consistency

Furthermore, we illustrate the behaviour of our expres-
sion network Fex in figure 11, by assigning a distinctive UV-
map as colors to each vertex. To be more specific, we assign
vertex colors by projecting a UV-map parallel to the ”depth-
dimension”. We then fix vertex colors and deform the mesh

NPM

Ours

Input 
Point
Cloud

Noise
Level

0.75 mm 0.30 mm 0 mm GT Scan

Figure 9. Qualitative comparison of NPMs [9] and our method
with respect to noise in the input point cloud. We perturb the points
by applying random Gaussian noise with different standard devia-
tions.
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Figure 10. Qualitative comparison of NPMs [9] and our method
with respect to the number of points in the input point cloud.

using Fex. The results show that semantic consistency is
preserved well, which is a direct consequence of our train-
ing strategy. i3DMMs [15] and ImFace [16] exhibit fewer
consistent correspondences since they model backward de-
formations and do not rely on direct supervision from de-
formations.
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Figure 11. Deformation Consistency: We show surface correspondences between neutral and posed meshes from our test set.
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Figure 13. We capture 23 expressions for each participant. Here we show two subjects performing all expressions.
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