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1. Datasets
In this work, we explore the widely used EPIC-

KITCHENS dataset [1], an unscripted dataset with nearly
20x more action classes and 10 − 100x more observed se-
quences than other action datasets such as Breakfast dataset
[6] and 50Salads [7] dataset.

We benchmark the EPIC-KITCHENS dataset on both
the EPIC-55 and EPIC-100 anticipation splits and use the
same training/testing split as in prior works [3, 4, 10, 11].
The EPIC-55 dataset consists of 39,600 segments split up
from raw, unscripted videos of humans performing 2,513
actions in the kitchen. The EPIC-100 dataset contains close
to 90,000 segments with 3,806 actions. For EK55, we use
the Top-1 accuracy metric which was the primary metric
used by most works on this dataset. For EK100, we use
the Top-5 Action Recall metric to compare performance as
done in most prior works for this dataset.

We also report results on the EGTEA+ Gaze dataset [8]
which contains 106 actions from over 10,000 segments.
Note that we use the same training/testing split (5-fold cross
validation average) as reported in prior baselines/works [3].
We report with anticipation horizon, tf = 1 so it is the same
for all our datasets in the offline setting.

2. Implementation Details
2.1. MViT Backbone

We perform our own feature extraction using the
MViT=B [2, 9] backbone. For the K400+IN1K model, we
use the 16x4 model pre=trained for short-term action recog-
nition on the Kinetics-400 dataset. The 16x4 model uses
16 frames sampled 4 frames apart at a 30fps. This trans-
lates to each clip being of length 2 seconds sampled at 8fps.
We sample directly from the RGB frames provided in the
EPIC-KITCHENS-100 dataset and do not use flow or ob-
ject features that few other works such as [3, 4]. Our K700
model uses a different 32x3 pre-trained MViT on the K700
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dataset. This model uses 32 frames sampled 3 frames apart
at a 30fps; while the performance is better due to the heav-
ier model architecture, the inference time is slower. This
trade-off is explored in detail in the main paper.

2.2. Data Details

We find that proper data pre-processing is critical to
model performance. We use a center crop of 224x224
and normalize the images after cropping to mean =
[0.45, 0.45, 0.45] and STD = [0.25, 0.25, 0.25] following
the scheme in MViT [2]. Note that techniques such as im-
age augmentations, random cropping, multi-crop evaluation
would boost performance during both inference and train-
ing. However, we do not perform augmentations on our data
due to GPU limitations making our training recipe much
faster in practice; training end-to-end with augmentations
however would further increase our performance as well.
For example [4] uses 3-crop testing which significantly im-
proves performance. Our proposed method does not re-
quire end-to-end training and is suitable for faster experi-
mentation iterations and those with GPU constraints. We
use an observed sequence length of 16-18 seconds which is
longer than previous works by 6 seconds but half as long
as MemViT’s model [11]. This however helps our model to
be lower latency than SOTA model MemViT.

2.3. Training Hyperparameters

We train our model with the AdamW optimizer with mo-
mentum 0.8 and weight decay of 0.001. We use a batch
size of 512 and AdamW optimizer for training. We train for
75 epochs using a cosine scheduler with a warm-up of 30
epochs. Our base learning rate is 1e-4 and end learning rate
is 8e-7. We use a dropout of 0.25 for the transformer and
a dropout of 0.1 for both the inputs and MLP feature/action
heads.

3. Results

3.1. Latency Evaluation

In the main paper, latency values are calculated over an
average of many samples rather than a single instance.
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Figure 1. This figure shows qualitative examples in which RAFTformer predicts the next action correctly, but AVT [4] is incorrect. Note
that we show Top-5 predictions. The frames and their corresponding labels show the past video and corresponding actions (from 16s ago
to the present).

3.2. Additional Baselines

In Tables 1 and 2 we present results on EK55 dataset
(Top-1 Accuracy), using flow and object features as input.
Note that this is the standard offline setting. We show that
even with these modalities (which is not used for our final
model), we outperform prior models. Note that the flow and

object features are the same used in [3]. All performance
improvements seen in these tables are due to the RAFT-
former Head architecturer (Anticipation Tokens and Shuf-
fled Causal Masking), since the backbone input features are
the exact same (frame-wise TSN features [3]).



Figure 2. Two examples of failure cases of RAFTformer. We can see that there are some cases where even RAFTformer has a lot of trouble
understanding context and what exactly is going on. In the first image, a tap is not clearly visible which is why RAFTformer may fail to
predict actions that involve a tap.

Model Top-5 Recall
RULSTM [3] 7.8

AVT [4] 8.7
RAFTformer 9.5

Table 1. Results of our model compared to others on flow fea-
tures provided by [3]. Note that all models used the same input
features, but we still outperform prior SOTA. Results are eval-
uated using the same train/val split [3, 4] which we refer to as
the offline setting (tf = 1s)

Model Top-5 Recall
RULSTM [3] 7.2

AVT [4] 6.7
RAFTformer 7.5

Table 2. Results of our model compared to others on object
features provided by [3]. Note that all models used the same
input features, but we still outperform prior SOTA. Results are
evaluated using the same train/val split [3,4] which we refer to
as the offline setting (tf = 1s).

3.3. Shuffling Probability Ablation

Shuffling ablation is shown in Figure 3, where we ob-
serve see the U-curve trend between performance and shuf-
fling probability. Additionally, we also find that using just
the reverse order (so fixed order but in reverse, no shuf-
fling) in input sequence yields no change in T5R. Note
that under a fixed π∗ (such as reversed), APE learns the
required temporal positioning information, thus preserving
T5R. With a randomly sampled and changing π∗ ∼ π,
the additional self-supervised task of predicting unseen clip
features boosts model performance over a fixed π. Specifi-
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Figure 3. Effect of SCM shuffling. We ablate the effect of shuff-
fling probabiltiy on the final T5R performance on EK100.

cally, we find 0.3 to be optimal gaining 0.7 T5R points over
doing no shuffling at all.

3.4. Qualitative Results

In figure 1, we visualize multiple examples where AVT
has incorrect predictions, but RAFTformer is able to cor-
rectly predict the next action. In figure 2, we show cases
where RAFTformer has incorrect predictions.

4. Limitations
In this work we focus solely on the short-term antici-

pation setting. Our model as is would not work directly
for rolling-out multiple steps into the future which could
be interesting for longer-term planning [5]. Furthermore,
reasoning about longer-term horizons raises more questions
about different types of multimodality that require addi-
tional modeling. Another limitation is that our model is
tested on egocentric videos of a single human acting in an



environment. While this is indeed applicable for human-
robot interaction and robot understanding, testing in even
more complex interactive environments would be an inter-
esting future direction.
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