
A. Datasets and Metrics
Audioset (AS) [18]. This dataset is used for both training
and evaluation. It contains 10s videos from YouTube anno-
tated into 527 classes. It consists of 3 pre-defined splits, the
balanced split with about 20K videos, test split with 18K
videos, and an unbalanced training split with about 2M vi-
does. For training, we use the 2M unbalanced set without
any labels, and only use it for audio-video matching. For
zero-shot evaluation in Table 2, we use the test set and
compute logits for each class using the textual class names
along with the templates as described later in Appendix B.3.
The metric used is top-1 accuracy.
ESC-50 (ESC) [58]. We use this dataset for evaluating the
learned representations in a zero-shot manner. The task here
is “Environmental Sound Classification” (ESC). It consists
of 2000 5s audio clips classified into 50 classes. It has pre-
defined 5 fold evaluation, each consisting of 400 test audio
clips. In this work, we compute 0-shot predictions on the
evaluation set for each fold and report the 5-fold average
performance. For ablations we use only the first fold for
computational ease. The metric used is top-1 accuracy.
Clotho (Clotho) [16]. This is a dataset of audio from the
Freesound platform with textual descriptions. It consists of
a dev and test set of 2893 and 1045 audio clips respectively,
with each clip associated with 5 descriptions. We consider
the text→audio retrieval task, and consider each of the 5 as-
sociated captions as a separate test query and retrieve from
the set of audio clips. The metric used is recall@K, where
a given test query is assumed to be correctly solved if the
ground truth audio is retrieved within the top-K retrieved
audio clips.
AudioCaps (AudioCaps) [36]. This is a dataset of audio-
visual clips from YouTube accompanied by textual descrip-
tions. It consists of clips from the Audioset dataset as de-
scribed earlier. We use the splits as provided in [52],1 which
removes clips that overlap with the VGGSound dataset. We
end up with 48198 training, 418 validation and 796 test
clips. We only use the test set for zero-shot evaluation of
our model. The task is text→audio retrieval, and evaluation
is performed using recall@K.
VGGSound (VGGS) [8]. This dataset contains about 200K
video clips of 10s length, annotated with 309 sound classes
consisting of human actions, sound-emitting objects and
human-object interactions. We only use the audio from the
test set (with 14073 clips) for 0-shot classification. The
evaluation is done using the top-1 accuracy metric.
SUN RGB-D (SUN). We use the registered RGB and Depth
maps provided in the SUN RGB-D [67] dataset train set
(∼5K pairs) for training our model. We follow [20] to post
process the depth maps in two steps - 1) we use in-filled

1https : / / www . robots . ox . ac . uk / ˜vgg / research / audio -
retrieval/resources/benchmark-files/AudioCaps_retrieval_
dataset.tar.gz

depth values and 2) convert them to disparity for scale nor-
malization. This dataset is only used in training, so we do
not use any metadata or class labels.
SUN Depth-only (SUN-D). We use only the ∼5K depth
maps from the val split of the SUN RGB-D [67] dataset
and denote them as SUN Depth-only. This dataset is only
used for evaluation and we do not use the RGB images. We
process the depth maps similar to SUN RGB-D (in-filled
depth, converted to disparity). We use the 19 scene classes
in the dataset and use their class names for constructing the
zero-shot classification templates.
NYU-v2 Depth-only (NYU-D). We use the 794 val set
depth maps from the NYU-v2 Depth-only [64] dataset
for evaluation only. We post-process the depth similar to
SUN Depth-only. We use the 10 scene class names in the
dataset. The 10th scene class, called ‘other’, correspond to
18 different semantic classes – [’basement’, ’cafe’,
’computer lab’, ’conference room’, ’dinette’,
’exercise room’, ’foyer’, ’furniture store’,
’home storage’, ’indoor balcony’, ’laundry
room’, ’office kitchen’, ’playroom’, ’printer
room’, ’reception room’, ’student lounge’,
’study’, ’study room’]. For zero-shot evaluation,
we compute the cosine similarity of the 10th class as the
maximum cosine similarity among these 18 classnames.
LLVIP (LLVIP). The LLVIP dataset [31] consists of RGB
image and Thermal (infrared low-light) image pairs. The
dataset was collected in an outdoor setting using fixed cam-
eras observing street scenes and contains RGB images taken
in a low-light paired with infrared images (8∼14um fre-
quency). The RGB thermal pairs are registered in the
dataset release. For training, we use the train set with
12025 RGB image and thermal pairs. For evaluation,
we use the val set with 3463 pairs of RGB and ther-
mal images. Since the original dataset is designed for
detection, we post process it for a binary classification
task. We crop out pedestrian bounding boxes and ran-
dom bounding boxes (same aspect ratio and size as pedes-
trian) to create a balanced set of 15809 total boxes (7931
‘person’ boxes). For zero-shot classification, we use the
following class names for the ‘person’ class - [’per-
son’, ’man’, ’woman’, ’people’], and [’street’,
’road’, ’car’, ’light’, ’tree’] for the background
class.
Ego4D (Ego4D) [22]. For the Ego4D dataset, we consider
the task of scenario classification. There are 108 unique sce-
narios present in the 9,645 videos of the Ego4D dataset. We
filter out all videos annotated with more than one scenario
which yields 7,485 videos with a single scenario assigned.
For each video, We select all time-stamps that contains a
synchronized IMU signal as well as aligned narrations. We
sample 5 second clips around each time-stamp. The dataset
is split randomly such that we have 510,142 clips for train-

https://www.robots.ox.ac.uk/~vgg/research/audio-retrieval/resources/benchmark-files/AudioCaps_retrieval_dataset.tar.gz
https://www.robots.ox.ac.uk/~vgg/research/audio-retrieval/resources/benchmark-files/AudioCaps_retrieval_dataset.tar.gz
https://www.robots.ox.ac.uk/~vgg/research/audio-retrieval/resources/benchmark-files/AudioCaps_retrieval_dataset.tar.gz


ing, and 68,865 clips for testing. During training we only
use the video frames and their corresponding IMU signal.
We use the test split to measure zero-shot scenario classi-
fication performance, where each clip of IMU signal is as-
signed the video-level scenario label as its ground-truth.

A.1. Data Representations

We use the standard RGB and RGBT representations
for images and videos. For videos, we use 2-frame clips,
inspired from recent work on ViT-style video architec-
tures [15, 69], where a video patch is 2×16×16 (T×H×W ).
We inflate the visual encoder’s weights to work with spa-
tiotemporal patches and and at inference time we aggregate
features over multiple 2-frame clips. Hence, we can use
models trained on image-text data directly on videos.

We used a single-channel image for the thermal data
since it is the natural form in which current infrared thermal
sensors return data [31]. For single-view depth, we ex-
perimented with different encodings – absolute depth [64]
as returned by sensors like the Kinect, inverse depth [61],
disparity [61], and HHA [24, 25]. Overall, we found that
disparity representation (which is a single-channel image)
worked the best. For audio we use the raw waveform pro-
cessed into mel-spectrograms [21], as described in the main
text. For IMU we use a 6×T tensor to represent the se-
quence of IMU sensor readings over time.

B. Evaluation details
We now describe the evaluation setups used in this work.

B.1. Inference implementation details

Audio/Video: For both these temporal modalities (whether
operated upon together during pre-training or separately
during inference), we sample fixed length clips to operate
on. During training, we randomly sample a clip, typically
2s in length. At inference time, we uniformly sample multi-
ple clips to cover the full length of the input sample. For in-
stance, for 5s ESC videos, we would sample ⌈ 5

2⌉ = 3 clips.
For video clips, we sample a fixed number of frames from
each clip. For audio, we process each raw audio waveform
by sampling it at 16KHz followed by extracting a log mel
spectrogram with 128 frequency bins using a 25ms Ham-
ming window with hop length of 10ms. Hence, for a t sec-
ond audio we get a 128×100t dimensional input.
IMU: For IMU, we sample fixed length clips of 5 seconds,
centered around time-stamps that are aligned with narra-
tions. For each clip, we get a 6×2000 dimensional input and
we measure the zero-shot performance for scenario classifi-
cation using each clip as an independent testing sample.

B.2. Few-shot evaluation details

For the few-shot results in Figures 3 using the ESC and
SUN datasets, we sampled k training samples per class,

where k ∈ {1, 2, 4, 8}. We fix the k samples such that
our model and the baselines use exactly the same samples
during training. For all few-shot evaluations, including the
baselines, we freeze the encoder parameters and only train
a linear classifier.
Audio: For audio few-shot training with ESC, our model
and the baselines are trained using AdamW with a learning
rate of 1.6× 10−3 and weight decay of 0.05 for 50 epochs.
Depth: For depth few-shot training with SUN, our model
and the baselines are trained using AdamW with a learning
rate of 10−2 and no weight decay for 60 epochs.

B.3. Zero-shot evaluation details

Query Templates. For all evaluations, we use the default
set of templates from CLIP [59].2 Note that we use the same
templates for non visual modalities like audio and depth as
well since we only use semantic/textual supervision associ-
ated with images.

B.4. Qualitative evaluation details

Cross-modal nearest neighbors. We perform the re-
trieval on the embedding feature after temperature scaling.
The nearest neighbors are computed using cosine distance.
In Figure 1, we show retrievals for audio from ESC, image
retrievals from IN1K and COCO, depth from SUN-D, and
text from AudioCaps.
Embedding arithmetic. For arithmetic, we again use the
embedding features after temperature scaling. We ℓ2 nor-
malize the features and sum the embeddings after scaling
them by 0.5. We use the combined feature to perform near-
est neighbor retrieval using cosine distance, as described
above. In Figure 1, we show combination of images and
audio from IN1K and ESC, and show retrievals from IN1K.
Audio→Image Generation. For generating images form
audio clips, we rely on an in-house reproduced implemen-
tation of DALLE-2 [60]. In DALLE-2, to produce images
from text prompts, the image generation model relies on
text embeddings produced by the pre-trained CLIP-L/14
text encoder. Since IMAGEBIND naturally aligns CLIP’s-
embedding space to that of other modalities proposed in the
paper, we can upgrade the DALLE-2 model to generate im-
ages by prompting it with these new unseen modalities. We
achieve zero-shot audio to image generation with DALLE-2
by simply using the temperature-scaled audio embeddings
generated by IMAGEBIND’s audio encoder as a proxy for
the CLIP’s text embeddings in the DALLE-2’s image gen-
eration model.
Detecting objects using audio. We extract all audio de-
scriptors from the validation set of ESC using an IMAGE-
BIND ViT-B/32 encoder, yielding 400 descriptors in total.
We use an off-the-shelf CLIP-based Detic [86] model and

2https://github.com/openai/CLIP/blob/main/notebooks/
Prompt_Engineering_for_ImageNet.ipynb
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use the audio descriptors as the classifier for Detic in place
of CLIP text-based ‘class’ embeddings. We use a score
threshold of 0.9 for the qualitative results in Figure 5.

C. Pretraining details

C.1. Best setup

In Table 9 we detail the hyperparameters used to pre-
train each of the models reported in Table 4. Our experi-
ments were done on 32GB V100 or 40GB A100 GPUs.

Config AS SUN LLVIP Ego4D

Vision encoder ViT-Huge
embedding dim. 768 384 768 512
number of heads 12 8 12 8
number of layers 12 12 12 6
Optimizer AdamW
Optimizer Momentum β1 = 0.9, β2 = 0.95
Peak learning rate 1.6e-3 1.6e-3 5e-4 5e-4
Weight decay 0.2 0.2 0.05 0.5
Batch size 2048 512 512 512
Gradient clipping 1.0 1.0 5.0 1.0
Warmup epochs 2
Sample replication 1.25 50 25 1.0
Total epochs 64 64 64 8
Stoch. Depth [28] 0.1 0.0 0.0 0.7
Temperature 0.05 0.2 0.1 0.2
Augmentations:
RandomResizedCrop
size 224px
interpolation Bilinear Bilinear

RandomHorizontalFlip p = 0.5 p = 0.5
RandomErase p = 0.25 p = 0.25
RandAugment 9/0.5 9/0.5
Color Jitter 0.4 0.4
Frequency masking 12

Table 9. Pretraining hyperparameters

Contrastive loss batch size vs. modalities. While con-
trastive losses do require larger batch size, this requirement
didn’t increase with the number of modalities. As noted
in Appendix B, our experiments (Table 2) sample a mini-
batch of one pair of modalities at a time: batch size of 2K
for (video, audio), and 512 for (image, depth), (image, ther-
mal), and (video, IMU). These batch sizes are smaller than
the >32K batch sizes used in prior work [10, 59].

Combining modalities. In Table 4, we show results with
combining the audio and video modalities. We combine
them by extracting embeddings from both modalities per
sample and computing a linear combinations of those em-
beddings. We used a weight of 0.95 for video and 0.05 for
audio for this combination, which was found to perform the
best.

Text query: ”Cooking a meal”

Text query: ”A person doing gardening work outdoors”

Figure 7. IMU retrievals. Given a text query, we show some
IMU retrievals and corresponding video frames.

C.2. Ablation setup

The following setup was used for our evaluations in § 5.
Different from the best setup, all ablation experiments uses
ViT-Base both for the vision and the modality-specific en-
coders. The models are trained for 16 epochs, unless men-
tioned otherwise.

For Table 5b, the differences between the linear and MLP
heads are detailed below: The MLP head did not improve
performance in our experiments.

Linear Linear(in dim, out dim)
MLP Linear(in dim, in dim), GELU, Linear(in dim, out dim)

D. Additional Results

Qualitative results. We show additional results (along with
audio) in the accompanying video.
Practical applications of disparate modalities. In gen-
eral, a shared embedding space enables a variety of differ-
ent cross-modal search and retrieval applications. e.g., since
IMU sensors are ubiquitous (in phones, AR/VR headsets,
health trackers), IMAGEBIND can allow a user to search
an IMU database using text queries (without training with
IMU-text pairs). IMU-based text search has applications
in healthcare/activity search. For instance, in Figure 7 we
show examples of IMU (and accompanying video) retrieval
given textual search query. The retrieved IMU sample,
shown as 3-channel Accelerometer (Acc) and Gyroscope
(Gyro) recording, matches the text query.



E. Additional Ablations
Design choices in losses. Since the modality-specific en-
coders are trained to align with a frozen image encoder, we
tried using a ℓ2 regression objective. For ZS SUN top-1
accuracy, we observed that regression led to good perfor-
mance as the sole objective (25.17%) or jointly with con-
trastive (29.04%). However, it did not improve over using
only the contrastive objective (31.74%).
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