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(a) Label: vulture (b) Label: ice lolly

Figure 12. Generated images from plug-and-play priors [5] with
ImageNet pre-trained ResNet50. On the ImageNet dataset, we ob-
serve that plug-and-play priors fail to generate realistic images.

A. Detailed Comparison with Previous Meth-
ods

We compare our method to two baselines 1) plug-and-
play priors [5] and 2) gradients on x̂0 by using the approach
in [1]. This section describes the details of the comparison
and their limitation. We note that these methods do not re-
quire training, but our method requires finetuning the off-
the-shelf model.

First, we observe that plug-and-play priors fail to pro-
duce realistic images on the ImageNet dataset. We gener-
ate images with unconditional 256×256 ADM [4] and pre-
trained ResNet50 [6] using their official code1. In the same
setting as FFHQ experiments in their work, we try to gen-
erate images by guiding them to random class labels. As
shown in Fig. 12, the generated images are not realistic. We
also increase the optimization step of their method, but there
are no significant differences. Correspondingly, their FID
and IS are 358.20 and 1.55, respectively.

We provide quantitative results of gradients on x̂0 in Ta-
ble 1 when s = 7.5. To investigate in further depth, we
compare our method with theirs while adjusting the guid-
ance scale s and utilizing the ResNet50 classifier. For im-
plementing gradients on x̂0, we use the official code2 of
Blended Diffusion [1]. As shown in Fig. 13, gradients on
x̂0 do not significantly improve FID, IS, and Precision, in-
dicating that it does not guide the diffusion model to the
class label. From this, we conjecture that it is effective in
image editing with the assistance of several techniques [1]
but not for guiding the diffusion without these techniques.

As the concurrent work, eDiff-I [2] replicates copies of a
single diffusion model and specializes each copy on differ-
ent time intervals. However, they apply the idea to the diffu-
sion model, not the guidance model. Also, while eDiff-I ap-
plied its idea to the diffusion model by focusing on training

1https : / / github . com / AlexGraikos / diffusion _
priors

2https://github.com/omriav/blended-diffusion

efficiency through a branching scheme, we applied our idea
to the guidance model to efficiently increase the number of
experts with the parameter-efficient fine-tuning strategy.

B. Details of Observational Study
We use the ResNet50 model and unconditional diffusion

model to illustrate our observation in Section 3.2. In this
section, we discuss the details of the experimental setup.

For off-the-shelf ResNet50, we exploit Imagenet pre-
trained ResNet503. On the ImageNet training dataset, we
fine-tune the off-the-shelf model for a single noise-aware
ResNet50 that learns the entire timestep t ∈ [1, ..., 1000].
During 300k iterations, AdamW [10] with a learning rate of
1e-4 and weight decay of 0.05 is utilized as the optimizer.
The batch size is set to 256.

For each expert ResNet50, we use the same optimizer
as the single noise-aware model above. In order to make
the total iterations for training five experts equal to those
of the single noise-aware model, we fine-tune off-the-shelf
ResNet50 with a batch size of 256 and 60k iterations.

During the reverse process with guidance, the guidance
scale s is set as 7.5 since it achieves good results for most
variants.

C. Details of Parameter Efficient Multi-
Experts

For the parameter-efficient multi-experts strategy de-
scribed in Section 4.1, we only fine-tune a small number
of parameters while reusing most of the frozen off-the-shelf
parameters. Here, we report how parameter efficient tun-
ning is applied to each architecture used in our experiments.

We first apply LORA [7] to certain weight matrix of the
off-the shelf model W0 ∈ Rd×k, which updates it with low-
rank decomposition as W0 +α/rBA where B ∈ Rd×r and
A ∈ Rr×k. During fine-tuning, A and B are updated, while
W0 is frozen. When inferencing the guidance model in the
reverse process, the weight matrix W0 is simply updated as
W = W0 + BA, resulting in no additional inference cost.
We note that α is fixed as 8.

If batch normalization and bias terms are used in the ar-
chitecture, we tune these as well. This incurs no additional
inference costs because it does not alter the model design,
such as layer expansion. We note that such parameter effi-
cient strategy is applicable to various architectures.

C.1. ADM Guidance Models

We use ResNet-50 [6] and DeiT-S [16] architecture for
the guidance model in ImageNet class conditional genera-
tion. For ResNet-50 architecture, LORA is applied to the
first and the second convolutions of each block, and also to

3We use publicly available torchvision [12] ResNet50

https://github.com/AlexGraikos/diffusion_priors
https://github.com/AlexGraikos/diffusion_priors
https://github.com/omriav/blended-diffusion
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Figure 13. Quantitative comparison between PPAP and gradients on x̂0 according to guidance scale s.
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Figure 14. ResNet50 model with LORA. The green color is the
layer where LORA is applied.

the first 7×7 convolution as shown in Fig. 14. We set the
LORA rank as r = 16, and also tune the bias and batch
normalization layers.

DeiT-S is a transformer-based model comprised of a
self-attention module and an MLP module. We only ap-
ply LORA to self-attention module weights with a rank of
r = 32. Since DeiT-S does not have batch normalization
layers, we only fine-tune bias terms.

C.2. GLIDE Guidance Models

Image classifier We use the ResNet50 [6] classifier for
guiding GLIDE to conduct class conditional image gener-
ation. All configuration of parameter-efficient multi-expert
is identical to those described in Section C.1.

Depth estimator MiDaS-small [13] is utilized for guid-
ing GLIDE. MiDaS is a monocular depth estimation, which
is used for various tasks such as the single-image view syn-
thesis [9, 11, 14] in a frozen state. MiDaS-small is compro-
mised of two components: 1) Backbone network which is
based on EfficientNet lite3 [15] and 2) CNN-based decoder
network. We apply LORA [7] with r = 8 to point-wise con-
volution layers of the backbone network as well as convolu-

tion layers of the CNN-based decoder network. Also, bias
terms and batch normalization layers are fine-tuned. The to-
tal number of trainable parameters used per expert is 0.7M,
which is 3.73% compared to the MiDaS-small parameter of
21M.

Semantic segmentation DeepLabv3-ResNet50 [3] is ex-
ploited for guiding GLIDE. DeepLabv3-ResNet50 is com-
promised of two components: 1) Backbone network which
is based on ResNet-50 [6] and 2) Atrous Spatial Pyramid
Pooling (ASPP) segmentation classifier decoder. We ap-
ply LORA to the ResNet-50 backbone. All configuration of
LORA is the same as in Section C.1. As a result, we intro-
duce 0.88M trainable parameters, which is 2.15% compared
to the DeepLabv3 parameter of 41.95M.

D. Guidance Formulation of PPAP for Other
Tasks

Here, we explain how the monocular depth estimator and
the semantic segmentation model can be incorporated into
the guidance model.

Monocular Depth Estimation A monocular depth esti-
mation model takes an image as input and outputs a depth
map f(x) ∈ RH×W , where H and W represent the height
and width of the input image, respectively. We formulate
knowledge transfer loss Lde for depth estimation models
as:

Lde = ∥sg
(
fϕ(x̃0)

)
− fϕn

(x̃t)∥1. (1)

Then, we guide image generation so that the image has
some desired depth map Dtarget ∈ RH×W as follows:

Lgd = ∥fϕn
(xt)−Dtarget∥1. (2)

Semantic Segmentation A semantic segmentation model
takes an image as input and outputs a segmentation map,
having classification logit vector at the pixel level, f(x) ∈



RC×H×W . We formulate knowledge transfer loss Lss for
semantic segmentation models as:

Lss = ∥sg
(
fϕ(x̃0)

)
− fϕn(x̃t)∥1. (3)

Then, we guide image generation so that the image is
aligned with the segmentation map Starget ∈ RC×H×W

as follows:

Lgs = ∥s(fϕn
(xt))− Starget∥1. (4)

E. Experimental Details
E.1. Guiding ADM for ImageNet Class Conditional

Generation

When we train the models, AdamW optimizer [10] is
commonly used with a learning rate of 1e-4, weight de-
cay of 0.05, and batch size of 256. All variants are trained
with the same total iterations of 300k. For implementing
LORA, we use the official code of LORA4 (See the details
of parameter-efficient multi-expert in Section C.1). We uti-
lize torchvision pre-trained ResNet50 and timm [17] pre-
trained DeiT-S for the off-the-shelf model. We calculate
FID, IS, Precision, and Recall with 10k generated samples
with random class labels. All experiments are conducted on
8×A100 GPUs.

E.2. Guiding GLIDE for Various Downstream
Tasks

Same with the ImageNet classifier guidance setting, we
use an AdamW optimizer with a learning rate of 1e-4 and
weight decay of 0.05 to train the models.

In image classifier guidance for GLIDE, we use the same
setting as in ImageNet class conditional generation with
ADM [4]. For depth estimation and semantic segmentation
models, we use MIDAS-small and DeepLabv3-ResNet50,
publicly available in torch-hub [12]. We train these with a
batch size of 128 and 300k iterations.

For guidance scale s, we use norm-based scaling for
guidance gradients [8]. We set the gradient ratio as 0.3.

F. More Ablation Study on ImageNet Condi-
tional Generation

F.1. Effect of Guidance Scale s

Here, we change the guidance scale s from 2.5 to 15.0
for identifying performance according to the guidance scale
s.

Figure 15 shows the results according to the guidance
scale s where DDIM sampler with 25 steps is used. From
these results, we can see that multi-expert and PPAP greatly
outperform the single-noise aware model in most guidance

4https://github.com/microsoft/LoRA

Sampler Method FID IS Precision Recall

DDIM
25 step

ResNet152 + PPAP 26.78 49.59 0.5976 0.6208
ResNet50 + PPAP 29.65 44.23 0.5872 0.6012
ResNet152 + single noise aware 29.63 42.09 0.5601 0.6305
ResNet152 + off-the-shelf 40.15 33.33 0.5074 0.6175

DDPM
250 step

ResNet152 + PPAP 20.34 61.01 0.6401 0.6164
ResNet50 + PPAP 22.70 52.74 0.6338 0.6187
ResNet152 + single noise aware 22.75 53.38 0.6261 0.6363
ResNet152 + off-the-shelf 31.44 38.28 0.5861 0.6529

Table 2. Quantitative results on ADM guidance by increasing the
size of classifiers. Increasing the size of the model from ResNet50
to ResNet152 improves the performance of guidance, and PPAP
with ResNet152 outperforms single noise-aware ResNet152. Al-
though PPAP is trained in an unsupervised manner, it outperforms
the single noise-aware model.

Sampler Method
Trainable

Parameters FID IS Precision Recall

DDIM
25 step

ResNet18×5 58.4M 20.38 63.74 0.6638 0.5898
ResNet152×1 60M 29.63 42.09 0.5601 0.6305
ResNet50×5 109.9M 19.98 74.77 0.6476 0.5887
ResNet50×1 25.5M 30.42 43.05 0.5509 0.6187

DDPM
250 step

ResNet18×5 58.4M 16.65 76.68 0.7182 0.579
ResNet152×1 60M 22.75 53.38 0.6261 0.6363
ResNet50×5 109.9M 16.37 81.47 0.7216 0.5805
ResNet50×1 25.5M 38.15 31.29 0.5426 0.6321

Table 3. Quantitative comparison between multi-expert strategy
and single noise-aware model. ×5 represents using five experts
and ×1 represents using single noise-aware model. A multi-expert
configuration with the same architecture and parameter fair signif-
icantly outperforms a single noise-aware model.

scales. Second, it can be seen that there is a sweet spot
around s = 7.5, where the guidance scale is neither too
large nor too small, and where neither the image quality nor
the guidance capability is compromised. Therefore, we set
the default guidance scale as 7.5 in our experiments.

F.2. Effect of Guidance Model Size

We also analyze the guidance when the size of the model
increases. Instead of using ResNet50, we use ResNet152
for training the single noise-aware model and PPAP with
five experts. Specifically, we implement LORA with the
same configuration in ResNet50, resulting in 8.6% train-
able parameters per expert compared to the parameter of
ResNet152. Training settings such as the optimizer and it-
erations are the same as ADM guidance with ResNet50.

As shown in Table 2, we observe that 1) increasing the
classifier size from ResNet50 to ResNet152 improves the
performance of guidance and 2) PPAP also outperforms the
single noise-aware model even when ResNet152 is used.

F.3. Effect of Multi-Experts

In Section 5.1, we validate the efficacy of the multi-
experts strategy by comparing the results with a range of
expert numbers [1, 2, 5, 8, 10]. Here, we present more re-
sults for supporting the effectiveness of the multi-experts.

https://github.com/microsoft/LoRA
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Figure 15. Quantitative results on guiding unconditional ADM with ResNet50 and DDIM 25 steps according to guidance scale s.

Method t-conditioned FID IS Precision Recall

Multi-expert-5 ✓ 19.98 74.78 0.6476 0.5887
✗ 19.54 73.23 0.6509 0.5916

Single noise aware ✓ 30.08 43.00 0.6017 0.6059
✗ 30.42 43.05 0.6009 0.6187

Table 4. Impacts of t-condition on ResNet50 with DDIM 25 step
sampler.

We compare the multi-expert strategy with 5 experts
and the single-noise-aware model in a setting where the
trainable parameters are fair. For fair trainable parameters,
we fine-tune 5 experts ResNet18 and single noise-aware
ResNet152 [6]. Both models are trained with a total of 300k
iterations on the ImageNet train dataset using the AdamW
optimizer, a learning rate of 1e-4, and a weight decay of
0.05.

Table 3 shows the quantitative comparison between
the multi-expert strategy and a single noise-aware model.
Through these results, we empirically confirm that the
multi-expert strategy with the same architecture and pa-
rameter fair setting significantly outperforms a single noise-
aware model. Specifically, in parameter fair setting, five ex-
perts with ResNet18 significantly outperform single noise-
aware ResNet152. We note that a multi-expert strategy does
not incur additional inference time costs, but increasing the
size of a single noise-aware model can incur additional in-
ference time costs. Considering these, it seems much better
to construct a multi-expert rather than increase the size of a
single noise-aware model.

F.4. Effect of Timestep Conditioned Guidance
Model

Multi-experts strategy can be seen as a piecewise func-
tion w.r.t time step t. From this point of view, one can won-
der about the advantage of multi-experts over t-conditioned
models. To answer this and show the effectiveness of the
multi-expert strategy, we compare the performance of the
model when it is conditioned on t and it is not. We add the

Method Parameter- Dataset FID IS Precision Recallefficient

✗
ImageNet 19.98 74.78 0.6476 0.5887

Multi- Data-Free 29.87 44.10 0.5837 0.5912
experts-5

✓
ImageNet 20.32 72.30 0.6333 0.5898
Data-Free 29.65 44.23 0.5872 0.6012

Table 5. Impacts of the data-free strategy on ResNet50 with DDIM
25 step sampler.

t-embeddings of [4] to the input of the ResNet50 model for
conditioning and generate images with DDIM 25-step sam-
pler. As shown in Table 4, naively conditioning the model
on t does not improve the performance.

F.5. Effect of Data-Free Knowledge Transfer

We conducted an ablation study for understanding the
impacts of the data-free strategy. We used five ResNet50
experts with and without parameter efficient strategy ap-
plied in them. Table 5 shows the quantitative results when
these five experts were supervisely trained on ImageNet and
trained on data-free knowledge transfer. The results indi-
cate that the models trained on labeled data produce better
guidance than those trained with the data-free strategy.

G. More Qualitative Results on ADM

G.1. Guided ADM with ResNet50

Due to limited spaces, we only show qualitative results
with DDPM 250 steps in Section 5.1. We illustrate more
qualitative results with DDPM 250 steps and DDIM 25
steps in Fig. 16 and Fig. 17, respectively.

G.2. Guided ADM with DeiT-S

Only qualitative results with DDPM 250 steps are pre-
sented in Section 5.1, because of limited spaces. Fig. 18
and Fig. 19 show qualitative results with DDIM 250 steps
and DDIM 25 steps, respectively.



H. More Qualitative Results on GLIDE

We note that the reference batch for measuring quanti-
tative results such as FID, IS, Precision, and Recall is not
valid since data for training GLIDE is not publicly avail-
able. Instead, we present various qualitative results to show
that PPAP can guide GLIDE.

H.1. GLIDE + ResNet-50

To show the effectiveness of PPAP, we illustrate more
qualitative results in Fig. 20. Furthermore, we also show
multiple generated images per class in Fig. 21.

H.2. GLIDE + Depth

We provide more qualitative results in guiding GLIDE
with depth estimator in Fig. 22 and Fig. 23. As illustrated in
Fig. 22, compared to off-the-shelf that does not reflect the
given depth at all, it is confirmed that the proposed PPAP
framework works well as a guide. We also provide mul-
tiple results from the same depth map, shown in Fig. 23.
Interestingly, our framework not only generates the proper
images corresponding to the given guidance with depth but
also infers the diverse objects that suit the given depth.

H.3. GLIDE + Segmentation

More qualitative results in guiding GLIDE with semantic
segmentation are illustrated in Fig. 24 and Fig. 25. As illus-
trated in Fig. 24, our PPAP framework can generate images
suited to given segmentation maps. It shows that our PPAP
framework is capable of both semantic-level guidance and
pixel-level guidance at once. We also provide in-class mul-
tiple images in Fig. 25.

I. Limitation and Discussion

Guiding GLIDE with our PPAP often generates images
with the style of data that trains the diffusion model but not
the guidance model. On the one hand, it means that the
guidance model can leverage various data covered by dif-
fusion, but on the other hand, it can be interpreted that the
guidance model cannot perfectly guide the diffusion model
to the data it has learned. Considering this, addressing the
train dataset mismatch between the diffusion model and the
off-the-shelf model can be the future direction of this work.

Also, we only use the guidance models that take a single
image as input. There are several publicly available off-the-
shelf models which take not only the image but also other
inputs. With designing suitable knowledge transfer loss and
guidance loss, collaborating with these off-the-shelf models
will produce various applications. Therefore, applying it to
various applications can be future work.
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Figure 16. Qualitative results on ImageNet class conditional generation with DDPM 250 steps by guiding unconditional ADM with
ResNet50.
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Figure 18. Qualitative results on ImageNet class conditional generation with DDPM 250 steps by guiding unconditional ADM with DeiT-S.
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Figure 19. Qualitative results on ImageNet class conditional generation with DDIM 25 steps by guiding unconditional ADM with DeiT-S.
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Figure 20. Generated images by guiding GLIDE with ResNet50 classifier. Our framework PPAP-5 succeeds in the guidance of diffusion,
but the naı̈ve off-the-shelf model fails.



C
or

al
re

ef
G

ol
de

n
re

tr
ie

ve
r

O
be

lis
k

Ti
ck

D
oc

k

PPAP Naı̈ve off-the-shelf

Figure 21. Qualitative results of in-class variations by guiding GLIDE with ResNet50 classifier. Our PPAP framework can generate proper
images corresponding to the given class, but the naı̈ve off-the-shelf fails.

O
ri

gi
na

l
D

ep
th

m
ap

PP
A

P
(O

ur
s)

N
aı̈

ve

Figure 22. More qualitative results by guiding GLIDE with MiDaS depth estimation. Naı̈ve off-the-shelf generates images that do not
reflect the guidance with depth, whereas the proposed method succeeds. As shown in the third column, through the proposed framework,
the generative model creates similar objects in the original image, but as we can see in the first and second columns, the images are
generated by inferring the object only with depth.
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Figure 23. Qualitative results of in-batch variations by guiding GLIDE with MiDaS depth estimation. Our PPAP framework can generate
proper images corresponding to the given depth, but off-the-shelf fails. PPAP generates not only various views of objects with a given
depth as in the fourth row, but also diverse objects shown in the sixth row.
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Figure 24. More qualitative results by guiding GLIDE with DeepLabv3 semantic segmentation. Our framework PPAP succeeds in the
guidance of diffusion, but the naı̈ve off-the-shelf model fails.
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Figure 25. Qualitative results of in-class variations by guiding GLIDE with DeepLabv3 semantic segmentation. Our framework PPAP
succeeds in the guidance of diffusion, but the naı̈ve off-the-shelf model fails.
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