
Interactive Segmentation of Radiance Fields

1. Implementation Details

All the methods proposed in the paper have been imple-
mented using PyTorch [8] branching off the code provided
by DVGOv2 [11]. All experiments are performed using
a commodity hardware equipped with AMD Ryzen 5800x
and a NVIDIA RTX 3090.

The feature components of the radiance fields namely
radiance latent vectors and the learnt DINO features are
stored using VM decomposition proposed by TensoRF [3].
For radiance latent vectors, we use VM-48 representation of
TensoRF and for DINO features, we use VM-64 variant of
TensoRF. The segmentation masks and densities have been
stored as a full voxel grids.

The DINO ViT-b8 [2] model provides 768 features for
each patch of 8 × 8 pixels in an image. We reduce the di-
mensionality of these features by doing a principal compo-
nent analysis reducing the effective dimension to 64. This
is consitent with the prior works [6, 12]. For each pixel,
the feature is calculated by referring to the feature of the
respective patch that pixel corresponds to.

We first pre-train the model for the volumetric density
and radiance for 20, 000 iterations. Once the radiance field
is stabilized on the VM-48 TensoRF representation, we in-
troduce distillation using student-teacher strategy similar
to that of [6, 12] on the VM-64 TensoRF variant. Upon
adoption, the resultant VM-48 variant of TensoRF along
with its shallow MLP represents the radiance field, and
VM-64 consititute the distilled features. It is to be noted
that the distilled features are not accompanied by a shal-
low MLP. The features are store at voxel lattice locations
and tri-linearly interpolated to be compared and optimized
against the DINO features without the involvement of any
non-linearity. The adoption is done with λ = 0.001 for
the weighted loss function for 5, 000 iterations. The loss
is taken on the features and radiance together to maintain
consistency.

We choose K = 10 when applying K-Means to the set
of features selected from the user’s brush stroke. For the
bilateral search, the value of σϕ and σs are set to 10.0 and
the 1.0 respectively while the threshold value τ is 0.1.

2. Scene Editing
In this section, we explain the procedures that were fol-

lowed for editing the 3D scenes post segmentation. The
segmentation procedure provides a 3D bit map representing
the segmented voxels. Utilization of an additional bitmap
also assists in faster rendering as the voxels with segmenta-
tion mask values of 0 can easily be filtered out. Fig. 1 shows
the additional results of scene editing.

2.1. Object Removal

For removing a segmented object from the scene, we al-
ter the evaluation of the density for a 3D point. We simulta-
neously evaluate the bit map value bx at the queried point.
To segmented the object of interest (foreground), the effec-
tive density σ′

x is σx ∗ bx. Similarly, to render the back-
ground the effective density σ′

x is σx ∗ (1.0− bx).

2.2. Translation

If an object needs to be moved to another location, the
ray queries lying inside the object’s voxel space can be
shifted to the desired location. Let t be the translation vec-
tor for the object to be moved, then the object’s ray-point
query changes as shown below.

σ′
x, rgb

′
x = σx, rgbx ∀ bx = 0

σ′
x, rgb

′
x = σx+t, rgbx+t ∀ bx = 1

2.3. Scene Composition

To perform scene composition, we follow a similar strat-
egy used by D2NeRF [13]. We alter the volumetric render-
ing equation to account for density and color from both the
scenes as shown below:

Ĉ(r) =

∫ tf

tn

T (t) (σ1(t)c1(t) + σ2(t)c2(t)) dt

T (t) = exp

(
−
∫ t

tn

(σ1(s) + σ2(s))

)
ds

The results for scene composition have been shown in
the main paper and Fig. 1 of the supplementary.
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(a) Original Rendered Image (b) Removal of Pot (c) Composition (d) Style Transfer

Figure 1. Seamless Progressive Scene Editing: Image (a) is the reference rendered viewpoint. In (b), the pot has been removed. Image (c)
shows scene composition. The JCB from KITCHEN scene has been placed on the top of the table in the GARDEN scene. Image (d) shows
appearance editing of specific objects. We apply style transfer on just the JCB. For more details please refer to Sec. 2.

(a) Rendered View 1 (b) Rendered View 2

(c) Segmented Trex (d) Depth Map

Figure 2. Finer Segmentation: Images (a) and (b) show rendered
views of T-Rex from the LLFF dataset [7]. Image (c) shows the
segmented output of T-Rex scene. Our method achieves fine-
grained segmentation of objects such as the rib-cage bones of T-
Rex. However, on close observation, the region near the tail bones
background bleeds in. This is due to the wall and the tail-bone lie
at the similar depth as shown in the depth map (d). This can be
mitigated by having more 3D information (better training views)
or higher voxel grid resolution.

2.4. Appearance Editing

Here, we apply style transfer on an already composed
scene. We first calculate a 3D bitmap for the JCB lego in
the KITCHEN scene. Then, we generate a new set of styl-
ized training images using the method proposed by [4, 5]
using a reference image. The appearance latent vectors and
the rendering MLP is fine-tuned according to the new train-
ing images while keeping the density and feature weights
frozen. This transfers the style from a reference image to
the 3D object.

3. Quantitative Analysis

To quantitatively compare our method on the LLFF
Dataset [7], we hand-annotate the segmentation masks for
the prominent objects in the CHESS TABLE , COLOR
FOUNTAIN , STOVE and SHOE RACK scenes. Tab. 1 re-
ports the segmentation metrics for the four scenes. In our
method, to predict the segmentation mask, we threshold α
to be greater than 0.1 while rendering. This removes the
low volumetric density seeping in that contribute negligibly
in the rendered visuals.

4. Region Growing: Bilateral Growth

In this section, we discuss the effect of bilateral filtering
on the radiance fields and how it improves the final result.
Even after employing an efficient feature-matching tech-
nique, we often obtain a high-confidence volumetric region
with missing constituting parts. This is because the content
search solely depends on feature distances while ignoring
the spatial priors. To resolve this issue we resort to Bilateral
search which exploits spatio-semantic domain priors result-
ing in accurate segmentation constituting all the desired re-
gions of the semantic object. This is demonstrated in Fig. 3,
where the initial high-confidence region misses the outer
leaf of the dry plant. While the bilateral region is growing,
we iteratively add more details into the extracted region, fi-
nally obtaining desired volumetric content. This content can
be further used for various purposes as discussed in Sec. 2.

5. Evaluation strategies against SOTA tech-
niques

5.1. N3F/DFF

As mentioned in the main document, we experiment with
various thresholds in the case of N3F/DFF [6,12]. We report
the quantitative metrics (Tab. 1) of our method against the
best results of their methods. N3F/DFF don’t produce good
results for any threshold as shown in Fig. 5.



(a) Rendered Image (b) High Confidence Region (c) Iteration 1 (d) Iteration 2

Figure 3. Region Growing: Image (a) is the reference rendered viewpoint. Image (b) is the high confidence region which misses out frontal
region of the dry-leaf when extracting the content. Image (c) shows the result obtained after the first iteration of bilateral filtering, which
captures most of the desired region of the leaf. Image (d) is the result of the bilateral filtering applied for the second time to include intricate
details such as strands around the dry-leaf.

Scene Metric N3F Ours (Patch) Ours (Stroke)

CHESS TABLE
Mean IoU ↑ 0.344 0.864 0.912
Accuracy ↑ 0.820 0.985 0.990

mAP ↑ 0.334 0.874 0.916

COLOR FOUNTAIN
Mean IoU ↑ 0.871 0.927 0.927
Accuracy ↑ 0.979 0.989 0.989

mAP ↑ 0.871 0.927 0.927

STOVE
Mean IoU ↑ 0.416 0.827 0.819
Accuracy ↑ 0.954 0.992 0.992

mAP ↑ 0.387 0.824 0.817

SHOE RACK
Mean IoU ↑ 0.589 0.763 0.861
Accuracy ↑ 0.913 0.965 0.980

mAP ↑ 0.582 0.773 0.869

Table 1. This table denotes the Mean IoU (Intersection Over Union), Accuracy and Mean Average Precision measurements for the four
LLFF scenes shown in the main paper. The ground truth segmentation masks have been hand-annotated for comparison.

(a) With Steel Balls (b) Without Steel Balls

Figure 4. Removal of Steel Balls: We use the MipNeRF360 [1]
formulation in voxel space for unbounded 360 degree scenes. This
gives fewer number of voxels to the background objects compared
to the central volume of interest. In this scene, we remove the steel
balls appearing in the background region of the scene.

NVOS Ours(NVOS Stroke) Our best
mIOU mAcc mIOU mAcc mIOU mAcc
70.1 92.0 83.75 96.4 90.8 98.2

Table 2. Quantitative metrics(mIOU and mAcc) of NVOS against
Ours using NVOS provided strokes and additional strokes using
our interactive feedback tool

5.2. NVOS

To make a fair comparison against NVOS [9], we uti-
lize the masks provided by NVOS and evaluate the quanti-
tative numbers on their dataset. We observe that our method
out performs NVOS both qualitatively and quantitatively as
shown Fig. 7 and Tab. 2 even when using their strokes. Us-
ing our own interactive tool with additional strokes achieve
much better results.

6. Interactive Segmentation

Our method provides interactive segmentation capa-
bilites to the user with the incorporation of positive and neg-
ative brush strokes similar to GrabCut [10].

Upon the addition of a new positive stroke, a new seg-
mentation mask bp is calculated using the procedure de-
scribed in the main paper. The user has the option to grow
this new region using bilateral filtering until not required.
The new segmentation mask bnew is given by b ∪ bp.

When the user adds a negative stroke, a new segmenta-
tion mask bn is calculated. Similar to a positive stroke, the



(a) CHESS TABLE (b) COLOR FOUNTAIN (c) STOVE (d) SHOE RACK

Figure 5. N3F/DFF Results: In this figure we show result of DFF/N3F [6, 12] on different thresholds and we reported the best of their
method in main document. It can be seen that despite varying the thresholds the result is poorly segmented. The background objects are
starting to bleed into the foreground. For the results of our method on the same scenes, please refer to the main paper.

user has the option to grow this region using bilateral filter-
ing until not required. The new segmentation mask bnew is
given by b∩ (b∩ bn)

′ (X ′ denotes the complement of X).

7. Critical Analysis
7.1. DINO Features

The teacher DINO features calculated on the training set
of images are for patches of size 8x8. This method asso-
ciates a total of 64 pixels to the same feature vector. As

Step Time Taken
Pre-training radiance field 7 mins

Training feature field 2.5 mins
K-Means Clustering 2 secs
3D Feature Query 1 secs

Bilateral Region Growing 0.3 secs

Table 3. Timings of different steps of the ISRF pipeline

shown in Fig. 6, the teacher features appear to be in low
resolution due to this. When performing the teacher-student
training using the joint loss function, the features learnt by
the student are finer in detail due to assistance from vol-
umetric density. Hence, the student surpasses the teacher
during distillation. This is evident from Fig. 6 as features
are allocated with distinct boundaries in the voxel space.

7.2. Finer Segmentation

Our method can segment out fine-grained details such as
the ribs of a T-Rex as shown in Fig. 2. However, it requires
accurate 3D information to achieve this. In the T-Rex scene,
the tail-bones cannot be distinguished from the wall behind,
since the training set images do not cover views which in-
dicate the separation. Therefore, the optimized model con-
taining the wall and the tail bones lie at similar depths as
shown in Fig. 2d. Use of additional images covering more
viewpoints can circumvent this issue.
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Figure 6. Student Surpasses Teacher: The 4 columns of this figure shows the DINO features used as teacher vs the ones learnt by student
post optimization. Since, the student learns finer features than the teacher due to assistance from the volumetric density, we can claim that
the student surpasses the teacher. This is consistent with the prior art N3F and DFF.

Reference NVOS Ours NVOS Stroke Ours Best

Figure 7. left to right: Reference segmentation using NVOS professionally segmented mask, Result of NVOS [9], Our result using NVOS
stroke, Our result using additional strokes. The quantitative comparisons are mentioned in the main document where our method performs
better than NVOS even when using NVOS strokes. Please zoom using Adobe Acrobat/Okular reader to see the details.



Figure 8. Interactive GUI Tool: We also release an easy-to-use interactive GUI tool which can be used to draw strokes and segment
radiance fields.
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