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In this supplementary material, we provide the additional
information for,

S1 code availability, and discussion about limitations,

S2 details of our implementation and experimental set-
tings,

S3 details of the datasets involved in our experiments,

S4 experimental results on generalization ability measure-
ment of the trained model,

S5 comparisons to the structure variant of plugging con-
tinuous RMM into HRDA,

S6 experimental results of predicting rectification values
on unseen coordinates,

S7 discussion on motivation and structure design,

S8 more quantitative and qualitative experimental results.

S1. Code Availability and Limitations Analysis
Code Availability. Our implementation is available at
https://github.com/ETHRuiGong/IR2F.
Limitations. In this paper, we propose the continuous
rectification-aware mixture model (RMM) based on im-
plicit rectification-representative function (IR2F), i.e. con-
tinuous RMM. We analyze limitations of our approach from
two aspects: 1) Though our continuous RMM is proven ef-
fective for rectifying pseudo-labels and boosting the UDA
performance by a large margin, our continuous RMM is still
yet to achieve the performance of fully supervised learn-
ing. 2) When testing our adapted model with another un-
seen dataset, i.e. domain generalization scenario, we can ob-
serve that our generalization performance falls behind our
achieved UDA performance. This is the same as other UDA
methods. However, as shown in Table S1, our continuous
RMM still strongly outperforms the previous SOTA UDA
methods under the generalization scenario. Even though the

further investigation on, how to improve the generalization
performance of the UDA model, is out of the scope of this
work, we believe that this is an interesting aspect for fu-
ture work, unifying the domain adaptation and generaliza-
tion scenario and learning more adaptive and generalizable
models.

S2. Implementation and Training Details

In the main paper, we propose the IR2F-based continu-
ous RMM for UDA, which can be used as a plug-in mod-
ule and is compatible with different UDA frameworks. In
Sec. 4.1 of the main paper, we provide implementation de-
tails of the framework structure and training. Here we
present additional more detailed implementation of our pro-
posed continuous RMM.
Training Details. By default, we follow the training details
of HRDA [7]. We utilize AdamW [9, 11] optimizer, where
betas of AdamW optimizer are (0.9, 0.999), the weight de-
cay is 0.01, and learning rates of the encoder and decoder
are set as 6×10−5, 6×10−4, respectively. The batch size is
set as 2, and the linear learning rate warmup and DACS [19]
data augmentation in [6, 7] are adopted. For Table 4 of the
main paper (our method integrated with MRNet), we follow
the training details of MRNet [27].
IR2F. fθ′ is implemented with a 4-layer multi-layer percep-
tron (MLP), with the hidden dimension of 256 and ReLU
activation.

S3. Datasets Information

As introduced in Sec. 4 of the main paper and Sec. S4
of the supplementary, there are 6 datasets involved in
our experiments, including GTA [14], SYNTHIA [15],
Cityscapes [4], Dark Zurich [16], ACDC-Night [17] and
NightCity+ [5, 18]. In this section, we provide the detailed
information about these datasets.
GTA. GTA [14] is a synthetic urban-scene image dataset,
rendered from the game engine. There are 24966 images
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included in the GTA dataset, which are of 1914×1052 pix-
els and are densely labeled with pixel-wise semantic seg-
mentation annotations. The urban scene of GTA dataset
is built based on the city of Los Angeles, thus with typ-
ical U.S. urban scene layout. Following previous UDA
works [6,7,19–21,25,27,28], the GTA images are resized to
1280×720 for low-resolution inputs [7], and to 2560×1440
for high-resolution inputs [7].
SYNTHIA. SYNTHIA [15] is a synthetic photo-realistic
image dataset, whose images are rendered from a vir-
tual city. We adopt SYNTHIA-RAND-Cityscapes dataset,
which is built for street scene parsing and consists of 9400
densely labeled images. The images are of 1280×760 pix-
els. In accordance with previous UDA works [6, 7, 19–21,
25,27,28], the SYNTHIA images are resized to 2560×1520
for high-resolution inputs [7], and keep 1280×760 for low-
resolution inputs.
Cityscapes. Cityscapes [4] is a real street-scene image
dataset, collected from different European cities. We uti-
lize the training set of Cityscapes during the training stage,
consisting of 2975 images. And we use the validation set
of Cityscapes, covering 500 images, to evaluate the model
performance. Cityscapes images are of 2048×1024 pixels.
The resolution is maintained for high-resolution inputs in
experiments, and resized to 1024×512 for low-resolution
inputs.
Dark Zurich. Dark Zurich [16] is a real nighttime urban-
scene image dataset, which is captured in Zurich. We use
the training set of Dark Zurich during the training stage,
including 2416 images. And we utilize the test set of Dark
Zurich, consisting of 151 images, to evaluate the model per-
formance. The evaluation on the test set of Dark Zurich is
only accessible through the online benchmark, where the
ground truth is not publicly available. The images in Dark
Zurich is of 1920×1080 pixels. The resolution is kept for
high-resolution inputs, and is resized to 960×540 for low-
resolution inputs.
ACDC-Night. ACDC [17] is a real street-scene image
dataset under adverse conditions, e.g. fog, snow, rain and
nighttime. We adopt the nighttime subset of ACDC, i.e.
ACDC-Night, where there are 400 images as training set
and 500 images as test set. Similar to the evaluation of
Dark Zurich, the evaluation on the test set can only be
conducted through the online benchmark, and the ground
truth is not publicly available. The images in ACDC-
Night is of 1920×1080 pixels. The resolution is kept for
high-resolution inputs, and is resized to 960×540 for low-
resolution inputs.
NightCity+. NightCity [18] is a real urban driving scene
dataset, for nighttime scene parsing. The images in NightC-
ity are collected from different cities around the world.
NightCity+ [5] is the extended version of NightCity, where
more accurate annotations in the validation set are provided

Method PSPNet [26] DANNet [22] DANIA [23] GLASS [10] HRDA [7] Ours

mIoU (%) 19.0 29.9 28.9 31.8 36.7 38.5

Table S1. Quantitative generalization comparisons, on NightC-
ity+ dataset. The model is trained on the day-to-night benchmark,
Cityscapes→Dark Zurich, and is tested on NightCity+ dataset.

compared to NightCity. We utilize the validation set of
NightCity+, including 1299 images, to evaluate the model
performance.

S4. Generalization Experiments
In Sec. 4 of the main paper, we compare our continu-

ous RMM to other methods under the UDA setting, proving
the advantage of our approach for domain adaptation. Fol-
lowing [10], we further evaluate the adapted model (after
domain adaptation) performance on another unseen dataset,
to show the generalization ability of our proposed contin-
uous RMM. More specifically, we take the trained model
under Cityscapes→Dark Zurich (i.e. the model in Table 2
of the main paper), and evaluate the trained model on the
third dataset NightCity+.
Quantitative Experimental Results. As shown in Ta-
ble S1, our proposed approach strongly outperforms other
UDA methods on the generalization ability evaluation,
38.5% vs. 36.7%, 31.8%, 28.9%, 29.9%, 19.0%. It proves
that our model trained on Cityscapes→Dark Zurich gener-
alizes well to other unseen nighttime datasets.
Qualitative Experimental Results. In Fig. S1, we show
the qualitative comparisons between our proposed approach
and previous SOTA method, HRDA [7], for generalization.
It is further proven that our trained model can generalize
well to other unseen nighttime datasets.

S5. Structure Variant Comparisons
Our proposed continuous RMM can be used as a plug-

in strategy to promote and rectify pseudo-labels used for
self-training in UDA. We introduced the structure of plug-
ging continuous RMM into HRDA in Sec. 3.4 and Fig. 3
of the main paper. Here we compare to the structure variant
of plugging continuous RMM. As shown in Fig. S2, besides
the structure in the main paper, we propose another structure
variant by training an IR2F for each branch. The estimated
rectification values r1, r2 are normalized as r1

r1+r2
, r2
r1+r2

,
to satisfy r1 + r2 = 1. Then we quantitatively compare
the performance of the structure in the main paper to this
structure variant, under the SYNTHIA→Cityscapes bench-
mark. As shown in Table S2, the structure in the main paper
and this variant achieve very similar performance 67.7% vs.
67.6% on the benchmark, SYNTHIA→Cityscapes. It fur-
ther proves the effectiveness of our proposed IR2F based
continuous RMM for UDA, and the flexibility of plugging
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Figure S1. Qualitative generalization comparisons, on NightCity+ dataset. The model is trained on the day-to-night benchmark,
Cityscapes→Dark Zurich, and is tested on NightCity+ dataset.
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Figure S2. Plugging continuous RMM into HRDA, with different structures. The structure on the left is the structure that we adopt in the
main paper. The structure on the right is the structure variant, where there is an IR2F trained for each branch, and the estimated rectification
values r1, r2 are normalized as r1

r1+r2
, r2
r1+r2

to satisfy r1 + r2 = 1.

Method Road SW Build Wall Fence Pole TL TS Veg Sky Person Rider Car Bus MC Bike mIoU

Original 90.4 54.9 89.4 48.0 7.4 59.0 65.5 63.2 87.8 94.1 80.5 55.8 90.0 65.9 64.5 66.8 67.7
Variant 90.0 53.8 89.3 46.9 7.2 59.7 65.0 63.6 87.6 93.4 80.3 54.4 89.9 69.1 65.4 65.9 67.6

Table S2. Comparison to structure variant, under SYNTHIA → Cityscapes. “Original” is the structure adopted in the main paper, and
“Variant” is the structure which trains an IR2F for each branch (see right side of Fig. S2). These two structures achieve similar performance
under SYNTHIA→Cityscapes.

our continuous RMM into the UDA frameworks through
different strategies.

S6. Rectification Values Prediction on Unseen
Coordinates

In order to test the generalization ability of rectification
values prediction method to the unseen coordinates, we con-
duct the experiments to predict the rectification values on
the 2× image coordinates. Since only the image coordi-
nates are utilized during the training, the 2× image coordi-
nates are unseen for training and are only used for testing.
For the discrete modeling method HRDA [7], the prediction
on unseen 2× image coordinates is realized by first predict-
ing on the original image coordinate and then up-sampling
(e.g. bilinear sampling) to the 2× image coordinates. For
our continuous modeling method, IR2F can directly output
the rectification values by inputting 2× image coordinates.
As shown in Fig. S3, it is observed that our IR2F-based
continuous modeling method generalizes well to the unseen
coordinates and preserves finer details compared to the dis-
crete modeling method, especially the boundary parts (see
Fig. S3).

S7. Motivation and Structure Design Discus-
sion

Where and why the continuous modelling is useful. As
shown in Table 6 of the main paper, our IR2F outperforms
different baselines, including discrete convolutional de-

coder based rectification value estimation, 67.7% vs. 65.8%.
This largely stems from the continuous modelling allowed
by the implicit neural representations (INR). The continu-
ous nature of INR is critical because off-grid positions exist
in: 1) the feature’s spatial dimension is smaller than the fi-
nal output; 2) different mixture members in RMM can be of
different resolutions. As shown in Fig. 5, our IR2F achieves
sharper and more accurate rectification values, while the
discrete convolutional predictions are blurry and coarse due
to sub-optimal interpolation. In Fig. S3 of the supplemen-
tary, compared to the discrete method, our IR2F can gener-
ate higher quality predictions on higher resolutions that are
unseen during training.
An INR for all images. Traditional INR works [1, 12] rep-
resent an object as a function, which maps coordinates to a
signal (e.g. signed distance to a 3D object surface). How-
ever, instead of fitting individual functions for each object,
more recent works [2, 3] aim to learn a shared general INR
for multiple objects, to share knowledge across instances.
The shared INR works typically utilize the encoder-based
strategy, where different objects are mapped to different la-
tent codes while sharing the same decoding INR function.
The shared decoding function takes additional latent codes/
feature vector as input besides the coordinates. We follow
the shared INR mechanism.
Relative coordinates vs. absolute coordinates. As shown
in Eq. (2) of the main paper, in IR2F, each local latent code
from different mixture members is responsible for predict-
ing rectification values of coordinates that are closest to it-
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Figure S3. Rectification values prediction on unseen coordinates. Rectification values are predicted on the 2× image coordinates during
the testing stage, which are unseen during the training stage. (b) is realized through the bilinear sampling of the output of HRDA [7], which
is the discrete modeling method. (c) is realized by directly predicting rectification values on the 2× image coordinates with our IR2F,
which is continuous modeling method. It is shown that our IR2F-based continuous modeling method can generalize well to the unseen 2×
image coordinates, preserving finer details especially the boundary parts (see red dashed box).

self. Thus, the relative coordinate, instead of the absolute
coordinate, between the queried coordinate and the coordi-
nate of nearest local latent code, is input to IR2F.

One feature vs. four nearest features. As shown in
Eq. (2), IR2F decodes relative coordinate (instead of dis-
tance) into the rectification value, conditioned on the near-
est features. The difference between one and four near-
est features is whether to incorporate more nearby features
in the decoding process [2, 8, 24]. We conduct the exper-
iment of four nearest features, yielding 74.5% mIoU for
GTA→Cityscapes. The performance is similar to that of
one nearest feature, 74.4%. To save memory, we take the
one nearest feature strategy.

Performance gain origin. We compare our continuous
method to other discrete learning-based methods, e.g. uti-
lizing an additional convolutional decoder to predict recti-
fication, in Table 6 and Table 5 of the main paper. Our ap-

proach outperforms these methods by at least +1.9 (67.7%
vs. 65.8%), proving continuous nature’s substantial advan-
tage.

S8. More Quantitative and Qualitative Results
Oracle pseudo-label rectification accuracy. To explore
the oracle pseudo-label rectification accuracy, we train
HRDA+IR2F in the supervised way, with cityscapes images
and ground truth labels. Then under GTA→Cityscapes,
mean pixel accuracy over all classes of our method and or-
acle are 81.65% vs. 88.28%.
Within-domain experiments. To study the effectiveness of
our IR2F for within-domain problems, we plug our contin-
uous RMM module into CCT [13], as done in Sec. 3.4. For
the semi-supervised segmentation task on PASCAL VOC
(1/16 labeled images), our IR2F+CCT improves CCT from
65.22% to 67.20%. It shows that our method helps for



Figure S4. Discrete vs. continuous pseudo-label visualizations. In each group, RGB images (left), pseudo-label of discrete method
(middle) and pseudo-label of our continuous method (right) are shown.

Learner Num MRNet MRNet+IR2F Improv. Learner Num MRNet MRNet+IR2F Improv.

2 50.3 52.3 +2.0 3 51.1 52.9 +1.8

Table S3. Learner Number Effects, under GTA→Cityscapes.

within-domain problems.
Discrete vs. continuous pseudo-label visualizations.
From the pseudo-label visualizations of discrete and contin-
uous methods in Fig. S4, it is observed that our continuous
method preserves finer details (e.g. sharp and accurate car,
train and sidewalk boundaries) than the discrete method.
Increased number of learners. To explore the effective-
ness of our continuous RMM when more learners are uti-
lized, we compare MRNet+IR2F performance of 2 and 3
learners, shown in Table S3. The improvement of 3 learn-
ers, brought by continuous RMM, is slightly lower than that
of 2 learners, 1.8% vs. 2.0%. It proves that our continuous
RMM method is still beneficial with increased number of
learners.
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