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1. Additional Details of GMM Forward Diffu-
sion

In Section 4.2 of the main paper, we describe the GMM-
based forward diffusion process. Here, we explain it in
more detail, particularly about how it can be framed in a
step-wise formulation. We first re-state Eq. 7 in the main
paper as follows:

ĥk = µG +
√
αk(h0 − µG) +

√
(1− αk) · ϵG. (1)

where µG =
∑M

m=1 1mµm, ϵG ∼ N (0,
∑M

m=1(1mΣm)),
and 1m ∈ {0, 1} is a binary indicator for the mth compo-
nent such that

∑M
m=1 1m = 1, and Prob(1m = 1) = πm.

We remark that Eq. 1 directly formulates ĥk as a function
of h0 instead of ĥk−1, because this clearly expresses the aim
of our GMM-based forward diffusion design, i.e., such that
the generated ĥ1, ..., ĥK can converge to the fitted GMM
model ϕGMM . Yet, we note that the step-wise formulation
of ĥk in terms of ĥk−1 can still be defined, if necessary.
First, we sample according to probabilities {πm}Mm=1, and
select a Gaussian component m̂, i.e., 1m̂ = 1. Next, we
first calculate h̃0, a “centered” version of h0, using h̃0 =
h0 − µG, where µG =

∑M
m=1(1mµm) = µm̂. Then, we

follow the step-wise formulation as follows:

h̃k =

√
αk

αk−1
h̃k−1 +

√
(1− αk

αk−1
)ϵG, (2)

where ϵG ∼ N (0,
∑M

m=1(1mΣm)), which is equivalent to
ϵG ∼ N (0,Σm̂). After taking k steps of Eq. 2 starting from
h̃0, we can get:

h̃k =
√
αk(h̃0) +

√
(1− αk) · ϵG. (3)

We observe that the result of the stepwise formulation is
thus equivalent to Eq. 1, as we can simply “de-center” our
h̃0 and h̃k by substituting h̃0 = h0−µG and h̃k = ĥk−µG.
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2. Additional Details of Diffusion Network g

In order to provide information to the model regard-
ing the current step number k, we generate a diffusion
step embedding fk

D ∈ RJ×256 using the sinusoidal func-
tion. Specifically, at each even (2j) index of fk

D, we set
the element fk

D[2j] to sin(k/100002j/256), while at each
odd (2j + 1) index, we set the element fk

D[2j + 1] to
cos(k/100002j/256).

3. More Implementation Details

In the forward diffusion process, we generate the de-
creasing sequence α1:K via the formula: αk =

∏k
i=1(1 −

βi), where β1:K is a sequence from 1e− 4 to 2e− 3, which
is interpolated by the linear function. To optimize the GMM
parameters ϕGMM , we sample 1000 poses from HK (i.e.,
NGMM = 1000) and then model HK via a GMM model.

During model pre-training, the Context Encoder ϕST is
first pre-trained on the training set to predict 3D poses from
2D poses. Then we adopt the Adam optimizer [7] to train
our diffusion model g, where the initial learning rate is set
to 1e−4 with a decay rate of 0.9 after ten epochs, and the
batch size is set to 4096. Our DiffPose is implemented using
PyTorch, and can be trained on a single GeForce RTX 3090
GPU within 96 hours.

4. Experiment Results on Human3.6M under
P-MPJPE (Protocol 2)

Tab. 1 and Tab. 2 present the video-based and frame-
based results of our DiffPose on Human3.6M under P-
MPJPE, where the input 2D poses are detected by CPN [1].
As shown in Tab. 1, our DiffPose can significantly outper-
form the state-of-the-art methods [8, 21] on all actions with
a large margin. Moreover, from Tab. 2, we observe that
our method can achieve promising performance on the chal-
lenging frame-based setting.
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Table 1. Video-based results on Human3.6M with detected 2D poses in millimeters under P-MPJPE.
P-MPJPE Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Lin [9] 32.5 35.3 34.3 36.2 37.8 43.0 33.0 32.2 45.7 51.8 38.4 32.8 37.5 25.8 28.9 36.8
Pavllo [15] 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Liu [12] 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6
Zheng et al. [24] 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6
Li [8] 31.5 34.9 32.8 33.6 35.3 39.6 32.0 32.2 43.5 48.7 36.4 32.6 34.3 23.9 25.1 34.4
Zhang [21] 28.0 30.9 28.6 30.7 30.4 34.6 28.6 28.1 37.1 47.3 30.5 29.7 30.5 21.6 20.0 30.6
ours 26.3 29.0 26.1 27.8 28.4 34.6 26.9 26.5 36.8 39.2 29.4 26.8 28.4 18.6 19.2 28.7

Table 2. Frame-based results on Human3.6M with detected 2D poses in millimeters under P-MPJPE.
P-MPJPE Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Sun [17] 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3
Martinez [13] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Pavlakos [14] 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8
Liu [11] 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2
ours 33.9 38.2 36.0 39.2 40.2 46.5 35.8 34.8 48.0 52.5 41.2 36.5 40.9 30.3 33.8 39.2

Figure 1. Qualitative comparison between Graformer [22] and our
method. Red colored 3D pose corresponds to the ground truth.

5. Additional Results

In this section, we further investigate the performance
of our method on the frame-based scenario, by conducting
experiments on Human3.6M [6].

3D Pose visualization. First, we qualitatively compare

our method with state-of-the-art method [22] in this setting,
and present results in Fig. 1. We observe that our method
can predict more reliable and accurate poses, especially for
novel human gestures (e.g., the first and second rows in
Fig. 1) and occluded body parts (e.g., the third and fourth
rows in Fig. 1).

Forward diffusion process visualization. Extending
from our results in Tab. 5 of the main paper, here we qual-
itatively compare our GMM-based forward diffusion pro-
cess with the standard diffusion process (as described in
Sec. 3 of our main paper). As shown in Fig. 2, the stan-
dard diffusion process recurrently adds noise to the source
sample and tends to spread the joints’ positions to the whole
space. However, our GMM-based diffusion process can add
noise according to pose-specific information (obtained from
heatmaps) and the data distribution, which generates noise
in a more constrained manner. Thus, during training, the
GMM-based diffusion process allows us to initialize a ĤK

that captures the uncertainty of the 3D pose, which boosts
the performance of DiffPose.

Reverse diffusion process visualization. We visualize
the poses reconstructed by our diffusion model with/without
the context information fST . Note that the model without
fST means that no context decoder is used. From the last
column of Fig. 3, we observe that both methods can recon-
struct realistic human poses while the model with fST can
predict more accurate poses. Moreover, compared to the un-
conditioned reverse diffusion process (i.e., the model with-
out fST ), the model conditioned by fST can converge to the
desired pose faster.

6. Future Work

In this work, we explore a novel diffusion-based frame-
work to tackle monocular 3D pose estimation. Future work
includes more investigations into the architecture of the dif-
fusion network, as well as extending to the online setting
[2,5,19], the few-shot setting [18,23] and other pose-based
tasks [3, 4, 10, 16, 20].
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Figure 2. Qualitative comparison between standard diffusion for-
ward process and our GMM-based forward diffusion process.
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Figure 3. Qualitative comparison between our reverse diffusion
process conditioned on context information fST (bottom), against
a reverse diffusion process without using fST (top).
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