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In this supplementary material, we present additional ex-
periments to study the performance of SkyEye. Specifically,
we analyze the computational efficiency of our model in
Sec. S.1 and perform an additional ablative experiment to
study the characteristics of our contribution in Sec. S.2. We
also present further qualitative results to demonstrate the per-
formance of SkyEye on the KITTI-360 dataset in Sec. S.5.

S.1. Evaluation of Model Efficiency

In this section, we compare the efficiency of Sky-
Eye with that of the other baselines on the KITTI-360
dataset. Tab. S.1 presents the results of this comparison
on an NVIDIA RTX 3090 GPU. We observe that SkyEye is
the most efficient of all baselines in terms of the number of
learnable parameters, using 7.73 million fewer parameters as
compared to the state-of-the-art fully supervised approach,
PoBEV [6]. We also note that SkyEye uses significantly
fewer Multiply-Accumulate (MAC) operations as compared
to POBEV. A large part of this efficiency can be attributed to
the use of a 3D voxel grid representation to jointly represent
features of both FV and BEV, thus alleviating the need for
separate representations in FV and BEV. Further, we observe
that our network design translates into a nearly 3-fold re-
duction in runtime as compared to PoBEV, requiring only
77.84ms per sample and allowing SkyEye to be used in
many real-time applications.

Table S.1. Comparison of model efficiency on the KITTI-360 dataset.

Method ‘ # Params (M) MAC (G) Runtime (ms)
IPM [25] 27.83 32.51 71.65
VED [24] 169.20 391.49 25.42
VPN [30] 23.01 55.45 8.68
PON [32] 91.06 657.63 164.08
TIIM [33] 40.72 1290.16 193.82
PoBEV [6] 22.33 272.68 213.92

SkyEye (Ours) ‘ 14.60 219.94 77.84

S.2. Additional Ablation Experiments

In this section, we perform an ablation experiment to
analyze the impact of different FV window sizes (WS) used
during implicit supervision on the overall performance of the
model. To this end, we perform implicit supervision using

windows of size 0, 6, 10, 14, and 20, and subsequently refine
these pretrained models using 1% of BEV pseudo labels.
We choose 1% of BEV pseudo labels to better highlight the
impact of window sizes on the overall performance of the
model. Tab. S.2 presents the results of this ablation study.
We observe that a window size of 10 generates the best
mloU score across all the tested window sizes, marginally
outperforming a window size of 6 by 0.12pp. We also
observe that larger window sizes report worse performance
across almost all classes. Thus, we use WS = 10 in our
SkyEye framework and perform all experiments with this
window size.

S.3. Additional Quantitative Results

In this section, we provide further quantitative results to
assess the influence of FV and BEV label quality on the
overall performance of SkyEye. To this end, we conduct two
further experiments following the same experimental setup
as presented in Tab. 2, but replace the source of supervision
in either FV or BEV.

S.3.1. Impact of BEV Label Quality

We quantify the impact of BEV label quality by replacing
the BEV pseudolabels during finetuning with the correspond-
ing BEV ground truth labels. Our results, shown in Tab. S.3,
indicate that the use of BEV ground truth labels does not
significantly impact the lower percentage splits of 0.1% and
1%. However, it provides a significant performance boost
for higher BEV percentage splits. We attribute this to the
increased quality of supervision for dynamic objects such
as car and 2-wheeler, for which the pseudolabel generation
pipeline often introduces imperfections. This observation
is supported by the significantly higher IoU scores obtained
for these two object classes when BEV pseudolabels are
replaced with BEV ground truth labels.

S.3.2. Impact of FV Label Quality

We investigate the dependency of SkyEye on the quality
of FV labels during the pretraining phase by replacing the
FV ground truth labels with FV semantic predictions. To this
end, we first train the Panoptic-DeepLab [1] model for se-



Table S.2. Ablation study on the impact of Window Size on the overall performance of the model. This experiment uses only 1% of BEV pseudo labels to
highlight the impact of window size. All scores are reported on the KITTI-360 dataset.

Window Size \ Road Sidewalk Building Terrain Person 2-Wheeler Car Truck \ mloU
0 71.82 3327 36.00 41.23 2.80 0.00 2497 542 | 26.94
6 71.97  35.63 36.86 39.07 2.93 0.00 2823 9.55 | 28.03
10 72.00  33.76 37.59 38.75 3.71 1.81 28.04 9.53 | 28.15
14 71.81  32.87 36.93 38.47 3.02 2.87 28.58 793 | 27.81
20 7121  35.16 35.77 38.26 3.59 2.35 2891 5.16 | 27.43

Table S.3. Ablation study on the impact of Implicit Supervision on the overall network performance. All scores are reported on the KITTI-360 dataset.

BEV (%) | BEVGT FV GT | Epochs | Road Sidewalk Building Terrain Person 2-Wheeler Car Truck | mloU
0.1 v v 300 68.78 28.20 35.56 26.08 0.00 0.00 21.61 0.00 22.53
: v X 57.35 19.36 22.13 12.54 0.00 0.00 10.56  0.00 15.24
1 v v 100 72.56 34.33 36.70 41.66 0.00 0.16 33.85 10.39 | 28.71
v X 70.69 31.13 32.38 40.08 0.00 0.00 29.08 3.95 | 2591

10 v v 50 76.07 40.30 40.30 45.33 3.75 8.15 42.64 10.73 | 3341
v X 73.16 37.08 38.41 45.45 3.66 6.69 40.60  7.94 31.62

50 v v 30 76.43 39.89 45.22 46.64 5.10 7.93 4243  12.30 | 34.49
v X 72.50 36.92 39.41 45.12 3.63 7.46 4121 9.73 32.00

100 v v 20 75.99 41.35 44.26 4591 4.08 9.53 44.13  12.68 | 34.74
v X 72.82 38.27 40.86 45.86 3.59 7.74 41.37  9.74 32.53

mantic segmentation on Cityscapes [2] and use the resulting
model to generate FV semantic predictions on KITTI-360.
We then pretrain SkyEye using these FV predictions and
subsequently finetune it on different percentages of BEV
ground truth labels. Tab. S.3 presents the results of this study.
We observe that the use of FV predictions in the pretraining
stage only results in a marginal decrease in performance for
all percentage splits except 0.1%. The drop in the 0.1% split
can be attributed to the degradation of FV label quality in the
pretraining phase, which cannot be sufficiently compensated
for by the small amount for BEV labels available in this split.

S.4. Pseudolabel Generation

Hyperparameters: For pseudolabel generation, we use
10 future frames with a step size of 2 resulting in
W=6 for the accumulation step. For DBSCAN, we set
eps=0.2, min_pts=20 for person and 2-wheeler, and eps=0.5,
min_pts=50 for car and truck. For the RANSAC algorithm
used to generate cluster ellipses, we set min_samples=20,
residual_thresh=3, and max_iters=10.

Pseudolabel Quality: We quantify the quality of our BEV
pseudolabels by comparing them with the BEV ground truth
labels and achieve an mloU score of 48.62%.

S.5. Additional Qualitative Results

In this section, we present additional qualitative results
on the KITTI-360 dataset and also present the BEV semantic
maps obtained when our SkyEye model is trained using

different percentages of BEV pseudo labels.

S.5.1. BEV Semantic Mapping

We qualitatively demonstrate the performance of our
model by comparing the output from our network to those
obtained from the state-of-the-art fully supervised approach,
PoBEV [6]. We also show an Error/Improvement map in the
rightmost column to highlight the difference in predictions
between both approaches. Fig. S.1 presents the semantic
BEV map predictions obtained from both networks. We
observe from the figures that our approach is mostly on par
with POBEV across a wide range of scenarios from straight
roads with multiple parked cars, to curved roads, and to
complex intersections. As already noted in the main paper,
we observe from Fig. S.1(d, e, f) that SkyEye performs sig-
nificantly better on static regions as compared to POBEV
which can be confirmed by looking at the large swathes of
green in the last column. Our model is able to estimate the
extent of roads and sidewalks better than POBEYV, and this
improvement in performance can be attributed to training
using implicit supervision which encourages the model to
learn spatially coherent representations. We also observe
from Fig. S.1(a, b, c) that our model is able to accurately
estimate the locations of multiple cars in the scene and these
images qualitatively look very similar to that of POBEV.
However, we note that when cars are extremely close to each
other, our model sometimes stretches the extent of cars and
merges multiple cars into one big blob. This is a limitation
of our model and is largely a consequence of using only a
forward-facing camera during implicit supervision which
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Figure S.1. Additional Qualitative Results on the KITTI-360 dataset. The rightmost column shows the Improvement/Error map which depicts pixels
misclassified by POBEV and correctly predicted by SkyEye in green, pixels misclassified by SkyEye and correctly by POBEV in blue, and pixels misclassified

by both models in red.

inhibits the model from extracting the extents of all four
sides of vehicles. Furthermore, our method does not have
access to the ground truth BEV map obtained using LiDAR
data that is able to perceive both close and distant vehicles
with higher precision. Nevertheless, our model performs on
par with POBEV without using any ground truth supervision
in BEYV, thus highlighting the impact of our self-supervised
BEYV semantic mapping framework.

S.5.2. Different Percentages of BEV Pseudolabels

In this section, we qualitatively evaluate the impact of us-
ing different percentages of BEV pseudo labels on the overall
performance of our model. Fig. S.2 presents the results of
this evaluation. We observe a very interesting trend across
samples when training our model with different percentages
of BEV pseudo labels. Across all images in Fig. S.2, we ob-
serve that our model gradually improves its reasoning about
dynamic cars in the scene with an increase in the percentage
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Figure S.2. Qualitative results obtained when SkyEye is trained using 0.1%, 1%, 10%, 50% and 100% of BEV pseudolabels.

of BEV pseudo labels. When using only 0.1% of pseudo
labels, our model fails to identify any dynamic cars in the
scene. Upon increasing the number of pseudo labels to 1%,
we see that our model starts reasoning about the locations

of dynamic objects but the cars look stretched and artificial.

However, upon further increasing the percentage of BEV
pseudo labels to 10%, our model predicts the locations as
well as the extent of cars accurately. Further increase in the

percentage of pseudo labels refines the predictions and better
constrains the extent of vehicles, but no significant improve-
ment can be observed between the BEV maps obtained using
10%, 50% and 100% of pseudo labels. This supports our
findings in Tab. 2 of the main paper where we observe no
large changes in mIoU scores when using 10%, 50%, and
100% of BEV pseudo labels to train the model.



Further, a special observation can be made when the
scene is fully static. Fig. S.2(c, d, f) depict static scenes with
multiple parked cars wherein we observe that our model with
0.1% of pseudo labels is already able to predict the locations
of cars with high accuracy. This accurate estimation of the
location of static cars with very few pseudo labels can be
attributed to the structure infused into the 3D voxel grid
representation by implicit supervision. This strong structural
signal thus enables the model to reason about the world in
BEV even when the model is exposed to extremely sparse
samples in BEV.
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