
Appendix
A. Experimental Details for Sec. 3

For the “VLM” mentioned in Sec. 3, we use the archi-
tecture designed in METER [8]. Similar to the ablation
study in experiments, the model is pre-trained on the 4M
dataset with an image-text matching loss and the (cross-
modal) masked language modeling loss, but the input im-
age is resized to 224 × 224 instead of 288 as in the normal
setting of METER. We replace the image encoder CLIP-
16 [26] with CLIP-32 for less memory usage and train the
model for 100k steps. For “LM”, we use roberta-base di-
rectly loaded from HuggingFace [34]. When training LM,
the corpus come from all the sentences in the 4M dataset by
excluding images. The model is finetuned with the masked
language modeling loss. Other hyper-parameters are set to
identical to that in “VLM”. For evaluation, the accuracy is
computed over the validation set of the COCO dataset [18].
Identifying Modality Bias. We train VLM and LM on
the CMLM/MLM task simultaneously, that is, for each
mini-batch in the dataloader (including images, sentences,
masked tokens), the VLM takes the masked sentences and
images but the LM takes only the masked sentences. The
mask probability is set to 15%. We report the per-epoch
accuracy.
Under-utilization of Unmasked Tokens.

This experiment does not involve any training as the pre-
trained models of VLM and LM come from Sec. 3. The
corruption of unmasked tokens are similar to the methods
described in Sec. 4.3. Specifically, in the first round, we
mask 15% of the tokens for the CMLM/MLM task. In
the second round, we additionally randomly mask τ% of
the tokens from the tokens that are NOT masked in the
first round. Then we use a pre-trained roberta-base model
loaded from [34] to recover the tokens that are masked in the
second round. Some tokens are successfully recovered by
roberta-base, while some are not. The corruption ratio is an
average of # tokens are not recovered

# all the tokens in the sentence among all the sentence in
the validation set. Finally, this corrupted masked sentence is
fed into the VLM/LM for the CMLM/MLM inference. We
record the CMLM/MLM accuracy over corrupted masked
sentences and compute the relative performance drop com-
pared to CMLM/MLM accuracy on the clean masked sen-
tence. We gradually increase τ and record the resulting
corruption ratio (i.e., x-axis) and relative performance drop
(i.e., y-axis).

B. Complete Algorithm of EPIC

The algorithm for the EPIC model is shown in Algorithm
1, where f̃VL(·) denotes the pre-trained vision-language
model to obtain qV

k and KW
k .

Algorithm 1 EPIC
Input: Token sequence w, raw image patches/regions v,
expected number of inconsistent tokens m;
Output: LITC,LGEN

// Obtain salient masking positions (Sec. 4.4)
Obtain qV

k and KW
k from f̃VL(w,v);

Compute α based on Eq. (8) and sample M based on m;
// Generate inconsistent samples (Sec. 4.3)
Obtain HL from fL(w

mask);
Generate new sentence w̄ based on Eqs. (4) and (5);
Obtain inconsistent tokens positions T via Eq. (6);
Compute LGEN based on Eq. (7);
// Compute LITC (Sec. (4.2))

Obtain
{
h̄
VL
i

}n

i=1
from fVL(w̄,v);

Compute LITC based on Eqs. (1) and (2);
return LGEN,LITC

C. Details of Teacher VLM

In our implementation, we use the publicly-available
checkpoints of the corresponding baselines as the teacher
model. The teacher model is frozen and is only leveraged
for saliency-based masking during pre-training.

D. Downstream Tasks

Image-Text Retrieval. Image-text retrieval includes two
subtasks: (1) retrieving images for given text (Image Re-
trieval (IR)) and (2) retrieving text for given images (Text
Retrieval (TR)). We conduct two different scenarios for
evaluations: “zero-shot” (ZS) retrieval task and “after-
finetuning” retrieval task. We conduct experiments on the
MSCOCO [18] and Flickr30K [25] datasets. For evalua-
tion, we use the recall at K (R@K) metric, which considers
top-K predictions as candidates for correct predictions, and
K is chosen from {1, 5, 10}. Note that METER, ViLT, and
X-VLM directly conduct zero-shot inference with the pre-
trained model, while ALBEF uses the model fine-tuned on
the MSCOCO dataset for inference.
Visual Question Answering (VQA). VQA [1] requires the
model to predict an answer given an image and a corre-
sponding question. We conduct experiments on the VQA
2.0 dataset [9]. For ALBEF and X-VLM, we treat VQA as a
language generation task; for METER and ViLT, we follow
the common practice to convert the task into a classifica-
tion problem. The final evaluation scores test-dev (dev) and
test-std (std) are obtained from an official evaluation server.
Natural Language for Visual Reasoning (NLVR2). This
task is to determine whether a natural language caption
is true about a pair of photographs. We use the dataset
from [31]. Following the practice of baselines, ALBEF and
X-VLM conduct further pre-training on the extended pre-



trained model and fine-tuned it on the dataset afterwards.
METER and ViLT directly fine-tune the pre-trained model
on the dataset.
Visual Entailment (VE). Visual entailment is a visual rea-
soning task to predict whether the relationship between an
image and text is entailment, neutral or contradictory. Of
the four baselines, only METER and ViLT conducted fine-
tuning on this task, so we follow their procedure to treat this
task as a three-way classification problem and report classi-
fication accuracy on the SNLI-VE dataset [35].

For all the downstream tasks, we follow original imple-
mentations and evaluations of baselines.

E. Pre-training Dataset
In Table 6, we provide the statistics of the 4M and 16M

datasets. For details about the 4M+ and 16M+ dataset,
please refer to [39].

Dataset # Images # Captions

4M

COCO 0.11M 0.55M
VG 0.10M 5.7M

SBU 0.86M 0.86M
CC3M 2.9M 2.9M

16M
4M 4.0M 10M

CC12M 11.1M 11.M

Table 6. Statistics of the pre-training dataset.

F. Implementation Details of Baselines
For, X-VLM and ALBEF, their names refer to the archi-

tecture/method proposed in the corresponding paper. The
implementation of X-VLM and ALBEF are identical to the
official repository.
METER. We reproduced the pre-training of
METER-CLIP-ViTBASE. During pre-training, we ad-
ditionally apply RandAugment to input images (we
remove color changes from RandAugment because the
text often contains color information, otherwise we may
generate inconsistent tokens unintentionally) as we found
that this technique is widely used by a lot of existing
vision-language pre-training methods [12, 14, 39] and that
it improves the generalization of the pre-trained model.
Further, we found that using a tri-stage learning rate
scheduler is beneficial for the performance of downstream
tasks. Specifically, we linearly warm up the learning rate to
its peak value in the first 10% steps, hold this value for the
next 80% of the steps, and finally decay it exponentially to
1% of the peak value in the remaining steps.
ViLT. We tried to reproduce the pre-training of
ViLT-B/32 a⃝ +⃝ [12], but we encountered “nan“ in the
middle of the training process. In response, we switched

off half-precision (fp16) and continued the training with
full-precision (fp32).

Note that the discrepancy in implementations between
the original paper and ours does not pose unfairness in com-
parisons as all the results in Sec. 5 are obtained based on our
reproductions.

G. Previous Checkpoints of VLM
At the beginning, the auxiliary VLM is the same as the

newly-initialized VLM. After that, at the end of each k-th
epoch, we save the current model’s checkpoint and use it as
the auxiliary VLM. Note that during pre-training, the auxil-
iary VLM is frozen. Therefore, the auxiliary VLM has the
same architecture as the main VLM and is able to do the
CMLM inference. Different from the LM as the generators
for inconsistent tokens, the auxiliary VLM considers the vi-
sual inputs when trying to recover the masked tokens.

H. Ablations on different mask ratios
As shown in Table 7, when the mask ratio increases,

more inconsistent tokens can be generated, which expe-
dites the learning of vision-language associations. How-
ever, when too many tokens are masked, the meaning of
the sentence can be completely different. As a result, the
model simply predicts all tokens as inconsistent, harming
the pre-training process. Therefore, the mask ratio is set to
35% as it brings the best (or nearly the best) results under
all settings.

I. Analysis of ITC Task
Here we empirically analyze the ITC task. In Fig. 6a, we

show the ratio of inconsistent samples. This ratio quickly
drops in the first few epochs because the language model
learns to fit to the text corpus. However, it converges in
later stages as the language model is incapable of recover-
ing the masked salient tokens, thereby producing inconsis-
tent tokens for the ITC task. Fig. 6b shows that the incon-
sistent tokens are quite challenging for the VLM trained by
EPIC to identify. Of all the inconsistent tokens, only about
half (depending on mask rates) could be identified by the
VLM because some image-token inconsistency can be sub-
tle. Such challenge distinguishes ITC from CMLM in that
ITC requires sophisticated cross-modal reasoning for each
task while only language reasoning could help CMLM to
achieve good performance as shown in Fig. 2a.

J. Integration to Baselines
To integrate our method with an existing VLP baseline,

one only need to additionally load an auxiliary BERT-like
language model and optimize a union of the original objec-
tives and ours. For example, in the case of METER [8] that
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Figure 6. Left: The ratio of inconsistent samples (y-axis). Right:
the accuracy of the ITC task over the inconsistent samples (y-axis).
Colors of the curves indicate different mask rates.

Corrupt Rate
NLVR2 Flickr30K-ft Flickr30K-zs MSCOCO-ft

dev TR1 IR1 TR1 IR1 TR1 IR1

15% 80.9 91.4 78.9 83.2 67.7 73.1 55.5
25% 81.0 92.0 79.0 83.8 71.5 73.5 55.4
35% 81.0 92.9 79.0 84.3 72.5 74.1 55.5
45% 81.0 91.6 79.0 84.4 71.6 73.0 55.8

Table 7. Ablations on different mask ratios.

is trained by LITM and LMLM, we now optimize the ob-
jective function for the integration of EPIC and METER as

Ltotal = LITM + LMLM + λLITC + LGEN, (9)

where λ is a hyperparameter to balance the ITC loss and
losses in METER.

K. Improving CMLM using Saliency-based
Masking

The proposed saliency-based masking can also be ap-
plied to CMLM to alleviate the modality bias problem. Af-
ter we obtained the masking positions M as described in
Sec. 4.4, we mask input sentences accordingly. Then we
conduct CMLM on masked sentences. We term the im-
proved CMLM as †CMLM. As shown in Table 8, when
salient tokens are masked in CMLM, the pre-trained model
demonstrates improved results on downstream tasks. This
validates our claim in Sec. 3 that the modality biasproblem
of prevents CMLM from learning sufficient vision-language
associations. We also tried to replace the original CMLM in
EPIC with †CMLM but we did not observe additional per-
formance gain on downstream tasks. We surmise that the
improvement of †CMLM overlaps with that of EPIC.

Method
NLVR2 Flickr30K-ft Flickr30K-zs MSCOCO-ft

dev TR1 IR1 TR1 IR1 TR1 IR1

vanilla METER 79.6 89.2 76.6 83.2 67.7 71.0 52.5
†CMLM 79.7 90.8 77.9 84.6 69.3 72.6 53.7

Table 8. Replacing the CMLM in vanilla METER with †CMLM
brings improvement to downstream tasks.


