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1. Experiments
In this supplementary material, we present more exper-

imental results on our FPL including effectiveness on the
twin fitting problem, comparisons on different loss func-
tions, evaluations on different color spaces, influences of
batch size, convergence curves of training, quantitative re-
sults of ablation studies and parameter analyses, and addi-
tional qualitative results. Moreover, we present the broader
impact statement in the end.

1.1. Analysis Experiments

In this section, we perform more analysis experiments to
further prove the effectiveness of our FPL.

Effectiveness on the Twin Fitting Problem. We illus-
trate the absolute differences between IHR, ISR

FSRCNN and
ISR
+FPL in Fig. 1(b)-(d), which show that FPL significantly

improves the fitting degree of high-frequency regions. Be-
sides, Fig. 1(e) shows that “+FPL” obtains more pixels with
small differences and fewer pixels with large differences.
In other words, SR model with FPL super-resolves the pix-
els in the high-frequency regions better than without FPL,
which verifies the effectiveness of FPL on alleviating the
twin fitting problem.

Comparisons on Different Loss Functions. Although
FPL looks like the high-order mean error, e.g., mean square
or cubic error (MSE/MCE), they are remarkably different in
the following aspects. First, FPL is specifically established
long-tailed distribution learning solution for SR, while the
high-order mean errors cannot effectively learn from the
long-tailed pixel distribution, and thus suffering from the
twin fitting problem. Second, FPL reformulates mean ab-
solute error (MAE) by re-weighting the pixel-wise contri-
bution and blocking the gradients in the weights. In other
words, FPL is essentially a MAE with dynamic weights,
and thus enjoys the advantages of MAE to SR tasks. Tab. 1
shows the quantitative results of different loss functions,
from which one could see that MSE/MCE generally obtain
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worse performance than MAE, while FPL significantly out-
performs it. The results demonstrate FPL could learn better
from the long-tailed pixel distribution so that the twin fitting
problem be alleviated.

Table 1. Comparisons of different loss functions w.r.t. FSRCNN
on 4x SR task.

Dataset Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

MAE 28.71/0.8500 25.84/0.7389 25.58/0.7122 22.99/0.7184
MSE 28.74/0.8471 25.86/0.7371 25.58/0.7112 23.00/0.7148
MCE 28.54/0.8373 25.73/0.7315 25.48/0.7066 22.89/0.7054
FPL 29.00/0.8565 26.01/0.7446 25.70/0.7178 23.26/0.7313

Evaluations on Different Color Spaces. As many ex-
isting SR models are evaluated on YCbCr color space in
their official implementations, we conduct this experiments
to demonstrate our implementations on RGB color space.
Here, we take CARN as an example and show the results in
Tab. 2. From the table, one could see that our implementa-
tion obtains the similar results as its official implementation
which uses more training datasets. As all the SR models
have almost the same training and testing settings, our im-
plementations of them are credible. Moreover, although the
quantitative results are different in YCbCr and RGB color
spaces, the performance gains are almost consistent.

Influences of Batch Size. To investigate the influence of
batch size on FPL, we train FSRCNN+FPL with the batch
size of 8, 16, 32, 64, and test it on the Set5. The quan-
titative results are shown in Tab. 3, from which one could
see that a small batch size (e.g., 8) degrades the perfor-
mance, while increasing the batch size to 16 or larger size,
the model obtains consistent and significant performance
improvements. The possible reason is that a small batch
size cannot ensure the significant attendance of the high-
frequency regions, because the training patches are cropped
from the 2K-resolution images which involve a high pro-
portion of low-frequency regions.
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Figure 1. The differences between HR and SR images, where IHR denotes HR image, ISR
FSRCNN and ISR

+FPL denote SR images from
FSRCNN and FSRCNN+FPL, respectively. (e) shows the pixel number of (b) and (c) in the different difference intervals.
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Figure 2. The convergence curves of FSRCNN and FSRCNN+FPL, in which the PSNR and SSIM values are calculated on the Set5.

Table 2. Comparisons of different color spaces w.r.t. CARN on 4x
SR task. Taking CARN as an example since the overlaps in testing
datasets between its official and our implementations. Note that
the training datasets in the official implementation are DIV2K, 291
image set, and BSD500, while that is only DIV2K in ours.

Dataset Set5 Set14 BSD100 Urban100

YCbCr Color Space

CARN (Official) 31.92 28.42 27.44 25.62
CARN (Our) 31.85 28.41 27.42 25.61

CARN+FPL (Our) 32.02 28.48 27.51 25.87
Gains +0.17 +0.07 +0.09 +0.26

RGB Color Space

CARN (Our) 29.94 26.61 26.07 24.12
CARN+FPL (Our) 30.11 26.69 26.16 24.36

Gains +0.17 +0.08 +0.09 +0.24

Table 3. Quantitative results of different batch size.

Batch Size 8 16 32 64

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

FSRCNN 28.66/0.8482 28.71/0.8500 28.65/0.8464 28.67/0.8485
+FPL 28.48/0.8422 29.00/0.8565 28.98/0.8559 29.00/0.8565

Convergence curves of training. To investigate train-

ing process, we illustrate the convergence curves of FSR-
CNN and FSRCNN+FPL in Fig. 2. From the figures, one
could observe that i) both FSRCNN and FSRCNN+FPL are
sufficiently convergent; ii) comparing with FSRCNN, FS-
RCNN+FPL converges faster and obtains better results; iii)
both PSNR and SSIM curves of FSRCNN+FPL are more
stable (i.e., less oscillation) than those of FSRCNN. Based
on the observations, we could conclude that FPL speeds up
and stabilizes the convergence process while improving per-
formance during the training.

Quantitative results of ablation studies and param-
eter analyses. In addition to the illustrations in the main
body of the paper, we present more quantitative results in
Tabs. 4 and 5. To be specific, Tab. 4 shows the quan-
titative results of changing γsp, γlp, where γsp = 0 or
γlp = 0 corresponds to remove one weighting function, and
γsp = 0, γlp = 0 simultaneously disables the two weight-
ing functions and only BI is remained to under-sample the
pixels. These results demonstrate the indispensable roles of
the two structure priors and BI under-sampling. Moreover,
Tab. 5 shows the quantitative results of changing αsp, αlp,
where are no very obvious performance changes among the
different parameter settings.

1.2. Qualitative Results.

In addition to the qualitative results from BSD100 in the
main body of the paper, we present more results on the



Table 4. Quantitative results of changing γsp, γlp.

Dataset Set5 Manga109

PSNR SSIM PSNR SSIM

L1 28.71 0.8500 25.78 0.8346
γsp = 0, γlp = 0 28.91 0.8543 26.18 0.8420
γsp = 0, γlp = 1 28.94 0.8551 26.25 0.8444
γsp = 0, γlp = 2 28.94 0.8553 26.32 0.8454
γsp = 1, γlp = 0 28.98 0.8561 26.35 0.8462
γsp = 1, γlp = 1 29.00 0.8565 26.41 0.8473
γsp = 1, γlp = 2 28.96 0.8556 26.33 0.8441
γsp = 2, γlp = 0 28.89 0.8552 26.29 0.8442
γsp = 2, γlp = 1 28.91 0.8552 26.33 0.8451
γsp = 2, γlp = 2 28.94 0.8547 26.31 0.8431

Table 5. Quantitative results of changing αsp, αlp.

Dataset Set5 Manga109

PSNR SSIM PSNR SSIM

L1 28.71 0.8500 25.78 0.8346
αsp = 0.1, αlp = 1.0 28.96 0.8556 26.33 0.8454
αsp = 0.5, αlp = 1.0 29.00 0.8565 26.41 0.8473
αsp = 1.0, αlp = 1.0 28.98 0.8552 26.33 0.8453
αsp = 2.0, αlp = 1.0 28.96 0.8556 26.39 0.8468
αsp = 0.5, αlp = 0.1 28.91 0.8549 26.31 0.8453
αsp = 0.5, αlp = 0.5 28.95 0.8557 26.39 0.8468
αsp = 0.5, αlp = 2.0 28.96 0.8557 26.34 0.8452

other datasets, i.e., Set5 (Fig. 7), Set14 (Fig. 6), Manga109
(Fig. 4), Urban100 (Fig. 3) and Test2K (Fig. 5). From the
figures, one could see that, compared with the original SR
models, FPL enables them to produce more faithful image
structures and clearer image details, while obtaining higher
PSNR and SSIM values. These results demonstrate the su-
periority of FPL in learning from the long-tailed pixel distri-
bution so that the twin fitting problem be alleviated. Some
areas are highlighted by color rectangles, and zooming in is
recommended for better visualization.

1.3. Broader Impact Statement

This work reveals and solves the twin fitting problem in
SR tasks caused by the long-tailed pixel distribution in nat-
ural images. There are many benefits to solve the twin fit-
ting problem, e.g., obtaining fine image details, speeding
up models’ convergence, and achieving performance gains.
Despite the benefits, it should pay attention to the potential
negative impacts including but not limited to i) as an image
enhancement technology, it has the potential of prejudicing
the rights of others with improper use; ii) although FPL en-
joys high interpretability, it doesn’t change the black-box

nature of deep SR models and result in tremendous security
risks when applied to some critical fields such as autopilot
and medical; iii) a lot of energy will be consumed to train
the SR model, and thus causing massive CO2 emissions.
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Figure 3. Qualitative comparisons on Urban100 dataset for 4× SR. The top row is the results of the models trained through L1 loss and
the LR image, while the bottom row is the results of the models trained through FPL and the GT image.
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Figure 4. Qualitative comparisons on Manga109 dataset for 4× SR. The top row is the results of the models trained through L1 loss and
the LR image, while the bottom row is the results of the models trained through FPL and the GT image.
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Figure 5. Qualitative comparisons on Test2K dataset for 4× SR. The first and third rows are the results of the models trained through L1
loss and the LR image, while the second and fourth rows are the results of the models trained through FPL and the GT image.
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Figure 6. Qualitative comparisons on Set14 dataset for 4× SR. The top row is the results of the models trained through L1 loss and the LR
image, while the bottom row is the results of the models trained through FPL and the GT image.
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Figure 7. Qualitative comparisons on Set5 dataset for 4× SR. The top row is the results of the models trained through L1 loss and the LR
image, while the bottom row is the results of the models trained through FPL and the GT image.


