
LiDAR-in-the-loop Hyperparameter Optimization
Supplementary Material

Félix Goudreault1 Dominik Scheuble2 Mario Bijelic2,3

Nicolas Robidoux1 Felix Heide1,3
1Algolux 2Mercedes-Benz 3Princeton University

In this supplemental document, we describe the experimental setups in detail and show additional
experimental results in support of the findings from the main manuscript (Section 1); we further explain
the proposed LiDAR simulation method as well as the DSP pipeline (Section 2); and, finally, we review
the concept of Pareto optimality and present the proposed optimization method in full (Section 3).

Contents

1. Additional Experimental Details and Results 2
1.1. Initial Settings for Optimization . 2
1.2. LiDAR Depth and Intensity Objectives . 2
1.3. Multi-Objective Optimization of Depth and Intensity Average RMSE 2
1.4. The ℓ1-Norm as Evaluation Metric . 4
1.5. Single Objective Vs. Multi-Objective Optimization . 5
1.6. Quality and Stability of MOO Solutions . 6
1.7. Training Details for 3D Detector . 15
1.8. Additional Object Detection Results . 16
1.9. Off-the-Shelf LiDAR Experiment . 16

2. Additional Details on LiDAR Simulation and DSP 19
2.1. LiDAR BRDF . 20
2.2. Extracting BRDF Coefficients α, s and d from CARLA 22
2.3. Ambient Illumination Model . 23
2.4. Point Cloud Projection . 23
2.5. Multipath Pulse Reflections . 24
2.6. Additional Details on Sensing and DSP Model . 25
2.7. Model Limitations and Possible Extensions . 26

3. Optimization 27
3.1. Pareto Domination and Optimality . 27
3.2. Balanced MOO Solutions . 28
3.3. Optimization Algorithm . 29
3.4. Joint Optimization of the LiDAR and the Object Detection CNN 32

1

1. Additional Experimental Details and Results
1.1. Initial Settings for Optimization

In all of this work’s simulated optimization experiments, the initial hyperparameter value was in-
variably the expert-tuned one. We did not investigate stability with respect to changes in the initial
conditions. Note however that losses are noisy; this is briefly discussed in Section 1.4. Loss noisiness
injects stochasticity in the optimization.

The simulated LiDAR was manually optimized by grid sampling and this expert-tuned setting was
used to train the object detector (Section 1.7). This process revealed that most settings do not provide
usable data, demonstrating the tedious nature of manual tuning and further justifying our automated
hyperparameter optimization approach.

Finally, for the hardware LiDAR experiment, the expert-tuned parameters were vendor-optimized
settings and the initial settings were the ones used to define the ground truth histogram (see Section 1.9).

1.2. LiDAR Depth and Intensity Objectives

Before presenting additional optimization results, we review the point cloud loss functions. We mini-
mize the average RMS depth error and the average RMS intensity error, that is,

Ldepth(Θ) =
1

F

F∑
f=1

RMSE(Rf ,Φ
(R)
f (Θ)), and (1)

Lint.(Θ) =
1

F

F∑
f=1

RMSE(If ,Φ
(I)
f (Θ)), (2)

where F is the number of frames in the validation set. For frame f , the RMSE(Rf ,Φ
(R)
f (Θ)) is the

pointwise root mean squared error between the predicted depth Φ
(R)
f (Θ) and its corresponding ground

truth Rf . Similarly, the RMSE(If ,Φ
(I)
f (Θ)) is the pointwise root mean squared error between the pre-

dicted integrated peak intensity Φ
(I)
f (Θ) and corresponding ground truth If . We refer to Section 2.6 for

the details of the computations of Φ(R,I)
f (Θ), Rf and If with our sensing and DSP model. Note that

points that would have been marked as “missed” in either the predicted values or ground truth, resulting
for example from a beam emitted towards the sky, are considered to have a distance and intensity of
0. The only stochastic component of the loss comes from the modeling of Poisson noise (Eq. (32)). A
discussion of its impact on Pareto front computation is found in Section 1.4.
Computation Time. Loss evaluation largely dominates optimization run times. On a 6-GPU machine,
one depth and intensity optimization run with 3000 loss evaluations requires approx. 6h to converge, four
times that for runs with 12,000 loss evaluations. When object detection and classification is included,
10× as many GPUs are required to match these run times. The high cost of evaluating losses is one
reason why short run results—the runs with 3000 loss evaluations documented below—are the most
important.

1.3. Multi-Objective Optimization of Depth and Intensity Average RMSE

We provide additional rendered results for the depth and intensity MOO experiment presented in
Figure 4 of the main document. In Figure 1, we show the individual depth error per point encoded by

Ground Truth Expert-Tuned Optimized

Depth Error [m]0 1 10m

Figure 1. Comparison of expert-tuned and MOO optimized (for depth and intensity average RMSE) point clouds
with ground truth in a bird’s-eye view. We encode the individual depth error per point with color. Including
depth as an optimization objective helps to remove clutter and more accurately resolve structures like facades of
buildings.

color. The proposed method achieves significantly lower depth error than the expert-tuned one over the
full range. Fine structures, especially, like the facades of buildings, are better resolved.
Validation Set. For all depth and intensity optimization runs, the validation set was composed of 10
frames randomly selected from the ones used for the object detector experiment. See Sec.1.7 for more
details.

1.4. The ℓ1-Norm as Evaluation Metric

As is well known, the ℓ1-norm is invariant with respect to equal but opposite changes in pairs of non-
negative vector components. We use the ℓ1-norm of the loss vector as evaluation metric because the
variations of the two loss components Ldepth and Lint. are approximately balanced in the case of study,
a property which the computation of the Pareto front (see Section 3.1 for a definition) revealed even
though there was no reason to suspect it a priori. Nothing about the loss components’ definitions—
Equations (1)–(2) above—suggests that it should hold along the Pareto front; PC depth and PC intensity
do not even have matching units! The Pareto front for the two losses is shown in the figure that accom-
panies Table 1 of the main paper. One readily sees that the Pareto front approximately follows a straight
line with a slope of 91 which shows that the variations of the two losses are commensurate along the
Pareto front.

Note that the Pareto front was estimated by aggregating loss data from all experiments and removing
Pareto-dominated points. Computing an approximation of the Pareto front by removing dominated
points from a limited number of samples ignores loss noisiness. We use a stochastic model for our
experiments (sensor noise is modeled randomly, see Eq. (32)). However, loss noisiness appears to be
relatively small. In Table 2 below, the difference ∆ between the largest and smallest of three independent
loss measurements obtained with expert-tuned LiDAR hyperparameter values, that is, using the same
LiDAR configuration every time, is 0.006 for Ldepth, this loss component ranging from 8.900 to 12.186
for the reported hyperparameter values, and 0.014 for Lint., loss component which ranges between 1.565
and 5.016 in the table. Similar numbers can be extracted from Table 5, table which documents separate
experiments. We infer that loss noise is small compared to loss variations in our case of study and expect
that the main effect, given the large number of loss value samples—hundreds of thousands—which we
used to compute the Pareto front, is that most of them are samples which the noise pushed slightly in the
“right” direction.

In any case, the ℓ1-norm, that is, the convex combination scalarization with unit weights, is generally
not recommended for optimization or champion selection because the ℓ1-norm is not invariant with
respect to rescalings of individual loss components. Other scalarizations which are scale invariant like
the stable max-rank loss defined in the main paper, and the (standard deviation) normalized ℓ1-norm and
the stable ℓ1-rank defined in Section 1.6, are likely to be more robust for optimization and champion
selection. Given that in our case of study the variations of two loss components are approximately
balanced, the ℓ1-norm, a simple metric which is distinct and separate from both the scalarizations that
drive the proposed optimization method on the one hand, and the proposed champion selection method
on the other, was chosen as primary evaluation metric.

In summary, although one should not rely on it without prior information about the respective vari-
ations (“gradients”) of loss components, we use the ℓ1-norm of the loss vector L = (Ldepth,Lint.) as
evaluation metric because our experiments showed that, in our specific case of study, the loss compo-
nents are approximately balanced.

OBJECTIVE Ldepth (↓) Lint. (↓) ℓ1-norm (↓)

SOO on Ldepth 8.870 4.925 13.795
Expert-Tuned 12.115 1.976 14.091
SOO on Lint. 30.979 0.236 31.215

Table 1. LiDAR Ldepth SOO (top), and Lint. SOO (bottom), with corresponding value of the other loss obtained
by direct evaluation of the loss component with the optimizing hyperparameter vector. The ℓ1-norm of the loss
vector

(
Ldepth,Lint.

)
, that is, ∥L∥1 =Ldepth + Lint., which was (of course) not used to optimize, is shown in the

third column. The best value for each metric is in bold.

1.5. Single Objective Vs. Multi-Objective Optimization

As explained in Section 3.2 below, hyperparameter vectors that minimize one loss generally make
one or more of the other losses take relatively large values and consequently are unlikely to be balanced
solutions of a genuinely multi-objective optimization (MOO) problem. One may nonetheless ask what
would happen if the problem was treated as a single optimization problem with respect to one or the other
of the two loss components. To answer this question, we performed two additional SOO experiments
with the proposed CMA-ES variant1, each one optimizing with respect to only one of the two loss
components but also reporting the minimizing hyperparameter configuration’s value of the other loss
component. The results are shown in Table 1. They support the idea that optimizing for only one loss
component yields solutions for which the other loss component’s values are poor. Indeed, SOO driven by
Ldepth gets the best (smallest) value for this loss and the worst (largest) value for Lint. (compare with the
values shown in Table 2 and Table 5, keeping in mind that losses are noisy and that solvers’ results may,
and often do, vary), and vice versa. In both cases, in fact, the loss component ignored by the optimizer
has a worse value—a lot worse, in the case of SOO driven by Lint.—than the expert-tuned configuration.

Another SOO approach is to use a “traditional” (static) scalarization of the loss vector [12], the mini-
mizer of which is chosen as champion. Depending of the scalarization and solver, the optimized solution
may of course vary considerably. In the following, we use this approach with a scalarization favorable
in our case of study, namely the ℓ1-norm of the loss vector (see Section 1.4). Three solvers were tested:
the proposed solver (the CMA-ES variant shown in Algorithm 1; see Section 3.3), the CMA-ES variant
of Mosleh et al. [34], and HyperOpt [3, 4]. Three independent optimization runs, with different random
seeds, were performed with each solver. Results are shown in Table 2 and Figure 2.

First, let us compare with the single loss component SOO optimization results shown in Table 1.
One sees that, with the proposed solver, (Ldepth,Lint.) pairs are a lot more balanced, in that none of the
values of the two loss components is relatively large. Indeed, with one single exception (the highest
value of Lint. with 3000 loss evaluations), the proposed solver yields Ldepth and Lint. values which are not
only better balanced but that are also simultaneously better than those obtained with the expert-tuned
hyperparameter settings. In other words, the expert-tuned setting is Pareto-dominated which is not the
case with the other two solvers. In addition, with all three solvers, the ℓ1-norm of the optimized loss
vector is always2 smaller than the expert-tuned one. This is expected as it drove optimization.

1When there is only one loss component, max-rank loss optimization with CMA-ES is strictly equivalent to optimiz-
ing directly with the loss because single objective CMA-ES is, by construction, invariant with respect to arbitrary strictly
monotone remappings of the loss [21]. Rank is a monotone remapping.

2One exception arises if one compares HyperOpt’s largest reported ℓ1-norm with the expert-tuned result reported in

ℓ1-norm (↓) Ldepth (↓) Lint. (↓) ∆Ldepth ∆Lint.
SOLVER Steps min max Low Mid High High Mid Low (↓) (↓)

Expert-Tuned 1 14.124 14.143 12.180 12.182 12.186 1.957 1.944 1.943 0.006 0.014

3000 11.427 12.576 9.861 9.890 9.896 2.686 1.569 1.565 0.035 1.121
Proposed 6000 11.418 11.461 9.850 9.893 9.894 1.568 1.567 1.565 0.044 0.003

12000 11.386 11.396 9.850 9.871 9.893 1.568 1.568 1.567 0.043 0.001

3000 13.548 14.089 8.900 10.080 12.158 5.016 3.494 1.942 3.258 3.074
Mosleh et al. 6000 13.438 13.661 8.987 9.916 10.963 4.563 3.532 2.820 1.976 1.743

[34] 12000 12.777 13.687 9.001 9.908 10.880 3.775 3.500 2.807 1.879 0.969

3000 12.232 14.122 10.033 12.168 12.169 2.199 1.953 1.939 2.136 0.260
HyperOpt 6000 - - - - - - - - - -

[3, 4] 12000 - - - - - - - - - -

Table 2. LiDAR SOO driven by the ℓ1-norm ∥L∥1 of the loss vector L = (Ldepth,Lint.) after 3000, 6000 and
12,000 loss evaluations. Three runs per solver. Along with the ℓ1-norm itself, extreme and median values of
the two loss components are shown, as well as the difference ∆ between the highest and lowest. Note that an
individual loss component may increase as the driving ℓ1-norm decreases if the other loss component decreases
more. Bold denotes the best solver for a given metric and total number of loss evaluations. Time constraints
unfortunately limited the number of loss evaluations per run with the HyperOpt solver to 3000.

Now, let us compare Table 2 with the MOO results shown in Table 3. For each solver, Table 3 shows
the median value, over three independent optimization runs, of the ℓ1-norm of the champion selected
using various methods. The last column, which shows the median value of the ℓ1-norm minimizer over
the three runs, is particularly relevant: It suggests that MOO optimization generally finds better ℓ1-norm
of the loss than direct SOO driven by the ℓ1-norm of the loss. The min and max values over the three runs,
shown in Table 4, basically tell the same story. This is quite striking given that our MOO experiments
are not driven by the ℓ1-norm of the loss vector. Although this could be a consequence of the tested SOO
solvers not performing well, these results suggest that MOO is better at finding synergies between loss
components, synergies which are missed when the solver does not keep loss components separate.

The results shown in Table 2 also suggest that the proposed solver finds better solutions (see the
first column of the table) and is more stable than Mosleh et al.’s when used for SOO (see the last
column). HyperOpt also does not perform as well as the proposed solver, but this conclusion is more
fragile given the limited data. This being said, HyperOpt does not improve on the initial (based on the
expert-tuned hyperparameters) loss value in two of the three runs; see the convergence curves shown in
Figure 2. Hence, HyperOpt might be a delicate choice when optimizing problems with a limited number
of optimizing steps, e.g., when the cost of evaluating losses is high.3

1.6. Quality and Stability of MOO Solutions

The results shown in Table 1 of the main document come from a large study involving, for each solver,
three different runs with different random seeds and 12,000 loss evaluations (“steps”). The results of this
study are spread over Tables 3, 4, 5, and 6, and Figures 3, 4 and 5.

First, we note that, as seen in Tables 3, 4 and 5, MOO optimization almost invariably beats expert-

Table 1 instead of Table 2. This “failure”, however, falls within the bounds of expected loss noisiness.
3After all, HyperOpt was designed for more general data structures than numerical parameter values in an hypercube [3,4].

Figure 2. SOO convergence plots where the optimized objective was the ℓ1-norm of loss vectors for the proposed,
Mosleh et al. [34] and HyperOpt [3, 4] solvers. The blue curves correspond to the loss value while the orange
curve tracks the ℓ1-norm minimizer after each step. The red star denotes where the best minimizer of the run was
found Unfortunately, time constraints limited the number of loss evaluations with the HyperOpt solver to 3000.

tuning.
This work’s study, however, also addresses other questions.
As explained in Section 3.2, MOO generally yields a Pareto front that contains many solutions; for

this reason, it is desirable to provide users with a default choice, with a champion. Mosleh et al. [34]
and Robidoux et al. [43] take the last Pareto point of the run. As discussed in the main document and
in Section 3.2, we propose a different champion selection criterion: Choose the Pareto point with the
smallest stable max-rank loss over the entire run (with ties resolved sanely; see Line 38 of Algorithm 1

METHOD / Last Pareto [34]
Normalized ℓ1-norm

Minimizer
ℓ1-rank

Minimizer
Stable Max-Rank

Minimizer
ℓ1-norm

Minimizer
SOLVER Steps Mid ℓ1-norm (↓) Mid ℓ1-norm (↓) Mid ℓ1-norm (↓) Mid ℓ1-norm (↓) Mid ℓ1-norm (↓)

Expert-Tuned 1 14.091 14.091 14.091 14.091 14.091

3000 11.089 10.995 11.014 10.995 10.995
Proposed 6000 11.604 10.973 10.988 10.988 10.973

12000 11.663 10.973 10.988 10.988 10.973

3000 11.546 11.024 11.427 11.427 11.024
AGE-MOEA 6000 11.523 10.997 11.401 11.443 10.997

[38] 12000 11.502 10.957 11.374 11.625 10.957

3000 11.851 11.043 11.399 11.437 11.043
RVEA 6000 11.632 11.005 11.372 11.399 10.997

[6] 12000 11.601 10.954 11.365 11.575 10.954

3000 11.622 10.985 11.424 11.461 10.985
C-TAEA 6000 11.437 10.981 11.401 11.411 10.981

[28] 12000 11.586 10.941 11.357 11.421 10.941

3000 11.497 11.562 11.497 11.497 11.497
Mosleh et al. 6000 11.387 11.417 11.417 11.417 11.387

[34] 12000 11.417 11.384 11.405 11.405 11.384

3000 13.422 11.026 11.449 11.512 11.026
U-NSGA-III 6000 11.458 10.966 11.405 11.633 10.966

[46] 12000 11.400 10.964 11.365 11.539 10.964

3000 11.407 11.063 11.532 11.574 11.063
NSGA-III 6000 11.736 11.015 11.404 11.561 11.015

[9, 10] 12000 11.449 10.957 11.360 11.610 10.957

3000 12.306 11.204 11.619 11.619 11.118
R-NSGA-III 6000 13.563 11.116 11.453 11.538 11.100

[57] 12000 11.572 10.957 11.377 11.667 10.957

3000 13.658 11.062 11.456 11.750 11.062
SMS-EMOA 6000 11.635 11.010 11.414 11.652 11.010

[5] 12000 11.486 11.010 11.377 11.595 10.988

Table 3. For each solver, value of the ℓ1-norm of the loss vector L of the selected champion for different champion
selection methods after 3000, 6000 and 12,000 loss evaluations. For each of three optimization runs per solver,
the median ℓ1-norm is shown (see Table 4 for the min and max values). Bold denotes the best solver for a given
selection method and total number of loss evaluations; bold italics shows the second best; italics, the third best.
Solvers (expert-tuned excluded) are listed by increasing value of the median ℓ1-norm of the loss vector of the stable
max-rank loss champion at 3000 loss evaluations; this ordering is used in the figure that accompanies Table 1 in
the main document.

in this supplementary document or Line 22 of Algorithm 1 in the main document). In this section,
we compare these criteria with two others: the normalized ℓ1-norm minimizer, and the ℓ1-norm rank
minimizer.
The (Weighted) Normalized ℓ1-Norm. The normalized ℓ1-norm of the loss vector is simply the
weighted ℓ1-norm of the loss vector where each component is divided by its standard deviation. In

METHOD / Last Pareto [34]
Normalized ℓ1-norm

Minimizer
ℓ1-rank

Minimizer
Stable Max-Rank

Minimizer
ℓ1-norm

Minimizer
min ℓ1 max ℓ1 min ℓ1 max ℓ1 min ℓ1 max ℓ1 min ℓ1 max ℓ1 min ℓ1 max ℓ1

SOLVER Steps (↓) (↓) (↓) (↓) (↓) (↓) (↓) (↓) (↓) (↓)

Expert Tuned 1 14.088 14.166 14.088 14.166 14.088 14.166 14.088 14.166 14.088 14.166

3000 11.051 11.965 10.970 11.483 10.970 11.508 10.970 11.508 10.970 11.479
Proposed 6000 11.520 13.407 10.970 11.437 10.970 11.440 10.970 11.445 10.970 11.413

12000 11.154 13.407 10.958 11.437 10.958 11.392 10.958 11.392 10.958 11.392

3000 11.107 11.935 10.955 11.107 11.375 11.451 11.375 11.451 10.955 11.058
AGE-MOEA 6000 11.117 11.839 10.955 11.006 11.375 11.427 11.416 11.707 10.955 11.006

[38] 12000 11.385 11.730 10.955 11.012 11.365 11.379 11.575 11.638 10.955 11.006

3000 11.411 12.955 10.988 11.193 11.385 11.421 11.385 11.526 10.988 11.098
RVEA 6000 11.599 13.356 10.954 11.034 11.365 11.383 11.365 11.508 10.954 11.034

[6] 12000 11.410 11.602 10.952 11.019 11.360 11.371 11.390 11.602 10.952 10.991

3000 11.456 11.879 10.972 11.144 11.405 11.461 11.424 11.563 10.972 11.144
C-TAEA 6000 11.422 11.543 10.945 10.990 11.393 11.408 11.402 11.484 10.945 10.990

[28] 12000 11.408 11.665 10.938 10.963 11.353 11.370 11.400 11.436 10.938 10.963

3000 10.989 13.011 10.989 14.128 11.005 13.011 11.005 13.011 10.989 13.011
Mosleh et al. 6000 11.004 12.949 11.001 13.014 10.979 12.949 10.977 12.962 10.960 12.932

[34] 12000 10.953 12.929 10.940 12.920 10.972 12.929 10.972 12.929 10.940 12.913

3000 11.524 14.884 11.000 11.028 11.405 11.459 11.501 11.572 11.000 11.028
U-NSGA-III 6000 11.417 11.809 10.964 10.976 11.366 11.414 11.572 11.637 10.964 10.976

[46] 12000 11.379 11.615 10.959 10.966 11.361 11.372 11.526 11.627 10.959 10.966

3000 11.113 13.824 10.991 11.101 11.409 11.541 11.451 11.663 10.991 11.101
NSGA-III 6000 11.368 13.352 10.983 11.035 11.372 11.423 11.508 11.573 10.983 11.035

[9, 10] 12000 11.378 11.498 10.953 10.970 11.358 11.378 11.458 11.615 10.953 10.970

3000 12.167 15.118 11.100 11.214 11.532 11.695 11.532 11.695 11.100 11.204
R-NSGA-III 6000 11.449 15.094 11.028 11.120 11.446 11.494 11.534 11.778 11.028 11.100

[57] 12000 11.509 12.461 10.951 10.978 11.374 11.392 11.645 11.675 10.951 10.978

3000 11.291 14.036 11.056 11.107 11.435 11.557 11.495 11.880 11.056 11.107
SMS-EMOA 6000 11.073 11.813 10.994 11.080 11.405 11.490 11.395 11.723 10.994 11.080

[5] 12000 11.485 11.639 10.988 11.034 11.351 11.378 11.588 11.626 10.974 11.034

Table 4. For each solver, value of the ℓ1-norm of the champion’s loss vector L for different champion selection
methods, after 3000, 6000 and 12,000 loss evaluations. For each of three optimization runs per solver, the lowest
and highest ℓ1-norms are shown. Bold denotes the best solver for a given selection method and total number of
loss evaluations; bold italics shows the second best; italics, the third best. Solvers are listed in the same order as
for Table 3.

particular, if the standard deviation of a loss component equals 0 (e.g., when there is only one loss vector
sample), this loss component is replaced by 0 since it obviously cannot guide champion selection. There
is consequently no division by zero. Like the max-rank loss, stable or not, the normalized ℓ1-norm is
invariant with respect to rescalings of individual loss components. This champion selection criterion was
inspired by [55, 56], where the corresponding total ordering is used to preprocess MOO data in order to
speed up Pareto front computation. However, unlike this work’s version, it is only approximately invari-

METHOD / Last Pareto Champion Selection Method [34] Stable Max-Rank Loss Selection (Proposed)
Ldepth (↓) Lint. (↓) Ldepth (↓) Lint. (↓)

SOLVER Steps Low Mid High High Mid Low Low Mid High High Mid Low

Expert-Tuned 1 12.14 12.16 12.20 1.971 1.976 1.930 12.14 12.16 12.20 1.971 1.976 1.930

Proposed
3000 9.84 10.84 10.85 2.129 0.243 0.216 9.85 10.75 10.77 1.654 0.243 0.216
6000 9.68 9.83 10.71 3.724 1.692 0.899 9.84 10.75 10.75 1.608 0.243 0.216

12000 9.68 9.78 10.73 3.724 1.887 0.424 9.83 10.74 10.75 1.565 0.243 0.216

3000 9.19 9.84 10.88 2.352 2.096 0.225 9.84 9.86 9.91 1.567 1.542 1.537
AGE-MOEA 6000 9.17 9.68 10.90 2.351 2.163 0.216 9.67 9.83 9.86 2.042 1.613 1.558

[38] 12000 9.13 9.23 10.68 2.376 2.155 1.045 9.54 9.76 9.76 2.038 1.878 1.869

3000 9.26 9.51 9.91 3.699 2.341 1.505 9.88 9.90 10.10 1.537 1.505 1.422
RVEA 6000 8.93 9.10 9.25 4.431 2.535 2.346 9.81 9.83 9.84 1.702 1.555 1.533

[6] 12000 9.07 9.08 9.17 2.535 2.527 2.243 9.80 9.80 9.82 1.806 1.768 1.572

3000 9.17 9.80 9.89 2.708 1.819 1.566 9.88 9.92 10.15 1.544 1.537 1.417
C-TAEA 6000 9.15 9.32 9.83 2.270 2.120 1.714 9.89 9.93 10.02 1.522 1.477 1.467

[28] 12000 9.78 9.92 10.29 1.810 1.487 1.373 9.90 9.94 9.94 1.502 1.492 1.477

3000 10.75 10.77 10.79 2.220 0.727 0.243 10.76 10.77 10.79 2.220 0.727 0.243
Mosleh et al. 6000 10.70 10.76 10.79 2.164 0.688 0.243 10.73 10.74 10.80 2.164 0.677 0.243

[34] 12000 10.71 10.74 10.79 2.142 0.677 0.243 10.73 10.73 10.79 2.142 0.677 0.243

3000 8.90 9.03 9.15 5.986 4.393 2.371 9.85 9.94 9.95 1.721 1.564 1.560
U-NSGA-III 6000 9.29 9.78 9.87 2.169 2.032 1.546 9.57 9.79 9.81 2.063 1.845 1.762

[46] 12000 9.07 9.11 9.58 2.335 2.267 2.038 9.49 9.49 9.74 2.045 2.041 1.886

3000 8.93 9.85 10.86 4.892 1.561 0.252 9.93 9.96 10.00 1.707 1.576 1.521
NSGA-III 6000 8.92 9.16 9.54 4.429 2.205 2.198 9.81 9.82 9.83 1.762 1.740 1.676

[9, 10] 12000 9.34 9.86 10.02 1.474 9.73 2.114 1.52 9.77 9.79 1.884 1.837 1.671

3000 9.05 9.65 10.80 6.065 2.652 1.372 10.00 10.06 10.16 1.564 1.531 1.528
R-NSGA-III 6000 8.91 8.94 9.92 6.183 4.624 1.528 9.86 9.87 9.90 1.914 1.671 1.633

[57] 12000 9.02 9.76 9.81 3.444 1.815 1.697 9.61 9.72 9.73 2.039 1.944 1.941

3000 8.93 8.96 10.87 5.102 4.698 0.412 9.85 9.87 9.98 2.029 1.767 1.629
SMS-EMOA 6000 9.57 10.70 10.78 2.070 0.294 1.110 9.22 9.66 9.68 2.177 2.043 1.989

[5] 12000 9.11 9.41 9.75 2.371 2.079 1.890 9.55 9.56 9.68 2.040 2.033 1.948

Table 5. For each solver, value of the point cloud’s average RMSE depth loss Ldepth and RMSE intensity loss Lint.
for the last Pareto point up to the given number of loss evaluations (left two columns), and stable max-rank loss
champion (right) after 3000, 6000 and 12,000 loss evaluations. For each of three optimization runs per solver,
as well as for the expert-tuned configuration, the lowest, median and highest values of the loss are shown. Bold
shows the best solver for a given champion selection method and total number of loss evaluations; bold italics
shows the second best; italics, the third best. Solvers are listed in the same order as for Table 3.

ant with respect to individual loss component rescalings since division by a vanishing standard deviation
is avoided by adding a small positive number (an “epsilon”).
The (Stable Weighted) ℓ1-Rank. The ℓ1-rank of the loss vector is obtained by aggregating the (stable)
ranks of each component with the (weighted) ℓ1-norm instead of the (weighted) ℓ∞-norm, that is, by
replacing “max” by “Σ” in Eq.(13) of the main document.

We also compare with the minimizer of the ℓ1-norm of the loss vector, our evaluation metric (see

METHOD / Last Pareto [34]
Normalized ℓ1-norm

Minimizer
ℓ1-rank

Minimizer
Stable Max-Rank

Minimizer
ℓ1-norm

Minimizer

SOLVER Steps
∆Ldepth
(↓)

∆Lint
(↓)

∆Ldepth
(↓)

∆Lint
(↓)

∆Ldepth
(↓)

∆Lint
(↓)

∆Ldepth
(↓)

∆Lint
(↓)

∆Ldepth
(↓)

∆Lint
(↓)

Proposed
3000 1.010 1.914 0.827 1.341 0.917 1.438 0.900 1.438 0.858 1.368
6000 1.021 2.825 0.866 1.333 0.922 1.392 0.916 1.392 0.895 1.338

12000 1.046 3.300 0.855 1.333 0.918 1.349 0.918 1.349 0.916 1.349

3000 1.687 2.127 0.142 0.009 0.071 0.032 0.071 0.032 0.060 0.078
AGE-MOEA 6000 1.730 2.136 0.042 0.028 0.035 0.026 0.192 0.484 0.042 0.028

[38] 12000 1.558 1.330 0.064 0.009 0.032 0.018 0.224 0.169 0.049 0.009

3000 0.650 2.194 0.169 0.036 0.037 0.067 0.224 0.115 0.046 0.091
RVEA 6000 0.328 2.085 0.051 0.036 0.026 0.013 0.038 0.170 0.044 0.036

[6] 12000 0.101 0.292 0.057 0.009 0.016 0.028 0.022 0.234 0.003 0.036

3000 0.720 1.143 0.186 0.027 0.070 0.033 0.265 0.127 0.186 0.027
C-TAEA 6000 0.677 0.556 0.045 0.027 0.014 0.024 0.128 0.055 0.045 0.027

[28] 12000 0.515 0.437 0.005 0.027 0.025 0.012 0.046 0.025 0.005 0.027

3000 0.045 1.976 1.419 1.720 0.029 1.976 0.029 1.976 0.045 1.976
Mosleh et al. 6000 0.086 1.921 0.143 1.916 0.049 1.921 0.064 1.921 0.069 1.921

[34] 12000 0.078 1.899 0.081 1.899 0.060 1.899 0.060 1.899 0.052 1.921

3000 0.254 3.615 0.027 0.009 0.016 0.047 0.097 0.162 0.027 0.009
U-NSGA-III 6000 0.582 0.623 0.012 ∼ 0.0 0.013 0.041 0.240 0.301 0.012 ∼ 0.0

[46] 12000 0.511 0.297 0.007 ∼ 0.0 0.009 0.002 0.257 0.159 0.007 ∼ 0.0

3000 1.929 4.640 0.074 0.036 0.167 0.038 0.070 0.184 0.074 0.036
NSGA-III 6000 0.616 2.232 0.042 0.009 0.039 0.014 0.021 0.086 0.042 0.009

[9, 10] 12000 0.688 0.640 0.016 ∼ 0.0 0.002 0.018 0.057 0.214 0.016 ∼ 0.0

3000 1.742 4.693 0.167 0.054 0.160 0.036 0.160 0.036 0.166 0.080
R-NSGA-III 6000 1.010 4.655 0.102 0.027 0.041 0.015 0.037 0.281 0.028 0.044

[57] 12000 0.795 1.747 0.027 ∼ 0.0 0.017 0.005 0.128 0.098 0.027 ∼ 0.0

3000 1.940 4.685 0.053 0.009 0.112 0.041 0.131 0.400 0.053 0.009
SMS-EMOA 6000 1.214 1.776 0.094 0.009 0.080 0.015 0.461 0.188 0.094 0.009

[5] 12000 0.634 0.481 0.055 0.009 0.019 0.016 0.131 0.092 0.087 0.027

Table 6. For each solver, difference between the maximal and minimal average RMSE depth loss ∆Ldepth and
RMSE intensity loss ∆Lintensity across 3 different optimization runs for different champion selection methods after
3000, 6000 and 12,000 loss evaluations. Bold highlights the lowest difference between average losses for a given
champion selection method and total number of loss evaluations, bold italics depicts the second lowest, while
italics denotes the third lowest. Solvers order is the same as for Table 3.

Section 1.4). Clearly, the normalized ℓ1-norm is a good match to the ℓ1-norm when loss components
are well-balanced, as is the case here. Additional existing champion selection methods, like the pseudo-
weight [8], were not tested.

In Table 3, we show, for each solver, the median, over the three runs, of the ℓ1-norm of champions
chosen with various methods; we also show, in the last column, the minimizer of the ℓ1-norm, our
evaluation metric. For short runs (3000 loss evaluations), the proposed solver gets either the best or
second best result, no matter the champion selection method. The proposed solver also ranks well with

Figure 3. MOO convergence plots where the optimized objectives were the RMSEdepth and RMSEintensities for the
proposed, AGE-MOEA [38] and RVEA [6] solvers. The blue curves correspond to the loss values Ldepth (top)
and Lintensities (bottom) while the orange curve tracks the loss of the max-rank champion at each step. The red star
denotes where the final champion was found during the run and the green circles represent the Pareto points relative
to the run’s data (they may not be actual Pareto points, only approximations). The proposed method converges to
the same local minimum as several of the other methods in the first run, and converges near an ℓ1-norm minimizer
in the other two.

longer optimization runs. Table 4, instead of the median of three runs, shows the min and the max.
Again, the proposed solver performs well when the run is short or when the champion is selected using

Figure 4. MOO convergence plots where the optimized objectives were the RMSEdepth and RMSEintensities for
the C-TAEA [28], Mosleh et al. [34] and SMS-EMOA [5] solvers. The blue curves correspond to the loss values
Ldepth (top) and Lintensities (bottom) while the orange curve tracks the loss of the max-rank champion at each step.
The red star denotes where the final champion was found during the run and the green circles represent the Pareto
points relative to the run’s data (they may not be actual Pareto points, only approximations).

the stable max-rank loss. (This is unsurprising given that the stable max-rank loss drives optimization
with the proposed method.) Other solvers also get comparatively good results; in part, this is because,
as seen in Figure 3, one of the three runs performed with the proposed solver converges to the same
attractor as most of the other runs (see the figure that accompanies Figure 1 in the main document).

Figure 5. MOO convergence plots where the optimized objectives were the RMSEdepth and RMSEintensities for the
U-NSGA-III [46], NSGA-III [9, 10] and R-NSGA-III [57] solvers. The blue curves correspond to the loss values
Ldepth (top) and Lintensities (bottom) while the orange curve tracks the loss of the max-rank champion at each step.
The red star denotes where the final champion was found during the run and the green circles represent the the
Pareto points relative to the run’s data (they may not be actual Pareto points, only approximations).

Tables 3 and 4 also confirm that all three tested champion selection methods improve on last Pareto of
the run. (As explained in Section 1.4, the ℓ1-norm of the loss, our evaluation metric, is out of the running
as a champion selection method because it is not invariant with respect to individual loss component
rescalings.)

Leaving the ℓ1-norm aside, Table 5 shows all three of the lowest, median and highest values of each
champion’s loss components after 3000, 6000 and 12,000 loss evaluations for each solver. In this table,
we only compare two champion selection methods: the last Pareto of the run selection criterion, and
the proposed minimizer of the (stable) max-rank loss. Looking at loss component values, we note that
within the Pareto front, the two losses are in opposition, as is always the case when there are only two
losses: by definition, decreasing one loss must increase the other. Thus, for solvers that converge close
to the actual Pareto front, a low value of one loss means a high value for the other. Consequently, values
in the middle of the range are not necessarily inferior even though one would ideally want both losses to
be as low as possible. This explains why increasing the number of iterations does not always decrease
the value of both losses: Pareto points, from which the champions are selected, are compromises. In any
case, the proposed solver again fares well, especially when the total number of loss evaluation is low,
and the proposed max-rank loss champion selection method is again seen to generally improve on last
Pareto point of the run; see, in particular, the values of Lint..

Table 6 shows ∆, the difference between the high and low values of each loss component, for the
champions obtained with each selection method and solver. ∆ corresponds to the vertical distance
between the farthest champions in a row of convergence plots of Figures 3, 4 and 5. A smaller ∆
suggests better stability. Here, the proposed solver fares poorly. The reason for this is that, as seen in
the first row of Fig. 3, the proposed solver sometimes converges to the local minimum of the Pareto
front where the champions of many of the other methods converge, instead of the ℓ1-norm minimizer:
In the figure that accompanies Table 1 in the main document, most methods’ champions are clustered
around a central point of the Pareto front where it juts toward the origin. This suggests that solvers that
“sweep” more than they “converge”, like the hypervolume-based methods tested in this work, may have
better stability than methods that aggressively seek minima like the proposed method and the method of
Mosleh et al.

Table 6 also shows that all three of the above proposed champion selection methods, namely normal-
ized ℓ1-norm, ℓ1-rank and max-rank loss, improve on last Pareto of the run. Which of the three is the
best overall is unclear. In addition, stability does not seem well correlated with result quality.

1.7. Training Details for 3D Detector

To generate training data, we use the proposed LiDAR sensing model within the CARLA simulation
environment. First, we spawn the ego-vehicle, 60 other vehicles and 50 pedestrians randomly in the
world. To animate the world, we use the traffic manager and walker artificial intelligence of the CARLA
engine so that the actors move towards random destinations within the map. At every step of the simula-
tion, we convert the bounding boxes of all available actors to the KITTI format. Since CARLA returns
bounding boxes for all actors within the map, we filter out bounding boxes without a single point. Fur-
thermore, pedestrian bounding boxes, as extracted directly from CARLA, do not encapsulate the full
pedestrian during, e.g., walking. We thus refine these by iterating through the skeleton and appropriately
enlarging the bounding box. Then, we emulate a sequence of 500 simulation steps with step size 0.1s.
We collect 10 sequences for five of the available CARLA worlds. For every world, we hold back one
sequence as validation set and use the remaining ones for training. We thus select 5900 frames in total
for training. We ensure that every frame has valid bounding boxes with at least a single point and use
only every fourth frame in a sequence. For validation, we select 1000 frames using the same procedure.
To ensure that the object detector performs reasonably for different hyperparameter settings Θ, we use 8
different parameterizations as defined in Table 7. Hyperparameters are selected manually ensuring that

they generate point clouds with different quantities of clutter points. Although hyperparameters could
be made to depend on the channel m, we use the same hyperparameter value over all channels.

Θ SELECTED VALUES

P0 200 500 200 1000 500 750 750 100
V 0.00 0.02 0.02 0.05 0.05 0.02 0.05 0.05
τ 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

Table 7. Hyperparameters Θ varied for generating training data. Hyperparameters are defined as globally constant
for each channel m.

We chose the PV-RCNN detector [48] as a representative 3D detector and train on full range 360° point
clouds from scratch. For training, the standard augmentation methods—flipping, rotation and copy-
paste ground truth augmentation—are used. We adopt the training configuration of [48] but decrease the
learning rate to 0.001 to ensure better convergence. Note that the detector is trained only on cars and
pedestrians. Trucks and cyclists are separate classes; the detector is not trained on them.

1.8. Additional Object Detection Results

We provide additional qualitative object detection results in Fig. 6 and Fig. 7. We compare the expert-
tuned and optimized point clouds with the ground truth. As described in the main paper, optimization
results in the removal of clutter and produces accurate point clouds that closely resemble the ground
truth. This comes at the cost of missing ground points at farther distances. This, however, does not affect
the detection results for farther away objects. Pedestrian detection especially improves. Pedestrians are
often missed within the expert-tuned point cloud because of clutter. For cars, fewer false positives
occur and the alignment of the bounding boxes qualitatively improves over the expert-tuned point cloud,
resulting in higher IoU and higher average precision (AP).

1.9. Off-the-Shelf LiDAR Experiment

Unlike what is the case with the above LiDAR simulations for which the ground truth depth map
is readily accessible, we do not have fine control over the scanning parameters of the specific LiDAR
system used for the real LiDAR experiments and, consequently, cannot easily acquire a ground truth
for the off-the-shelf LiDAR experiments. If the vendor provided full access to the sensing and DSP
pipelines, an accurate ground truth could be acquired similarly to Gruber et al. [16] by dense (and slow)
scanning of a static scene.

As only fixed scanning patterns are available for the off-the-shelf LiDAR hardware employed in our
investigation, a direct pointwise metric is challenging to use; instead, we work with 3D histograms of
sampled point clouds. These histograms are defined with 3D bins expressed in spherical coordinates with
each axis sampled uniformly. The histogram bin volume depends on the distance and angles relative
to the origin; farther bin volumes are scaled by distance squared. We sample bins with 20 cm range
resolution, 0.1° resolution for the vertical angles and 0.2° resolution for the horizontal angles.

We denote by hGT the ground truth 3D histogram obtained by averaging 100 point cloud frames
generated with uniform scanning pattern angular resolution. The loss function used for the optimization

Figure 6. Qualitative results with object detection as optimization objective. For visualization purposes, only the
camera field-of-view is shown.

Figure 7. Qualitative results with object detection as optimization objective. For visualization purposes, only the
camera field-of-view is shown.

METRIC Optimized Expert

|L3D hist.|/105 (↑) 1.59 1.32
RMSEdepth (↓) 2.98 cm 10.1 cm

Table 8. Off-the-shelf LiDAR experiment loss and RMSEdepth evaluation for expert and optimized parameters.
The best value for each metric is in bold.

experiment is

L3D hist.(Θ) = − 1

N

N∑
i=1

Nbins∑
n=1

(hGT ⊗ hi(Θ))n, (3)

where N = 10 is the number of frames taken to average the histogram multiplication, hi(Θ) is the i-th
point cloud histogram taken for the hyperparameter configuration Θ, ⊗ denotes bin-wise multiplication
and the inner sum runs over all histogram bins. This loss function drives the optimizer to accumulate as
many 3D points as possible where the ground truth is denser, as seen in Fig.6 of the main paper where
the histogram binwise multiplication is shown prior to summing. The optimized configuration yields
denser point clouds where the ground truth is dense while the expert-tuned point cloud had a different
ROI where the ground truth was not dense, resulting in a high loss. The fitness function mentioned in the
main article is the negative of the loss function of Eq. 3. A feature of this loss function is that higher bin
counts than the ground truth histogram are not penalized; this needs to be considered when computing a
quantitative depth error metric for the histograms. As such, we choose the following metric

RMSEdepth =
1

N

N∑
i=1

√√√√ 1

Nbins

Nbins∑
n=1

D (hGT
n , hin)

2 r2n
√
hin, (4)

where rn is the depth of the edge closest to the LiDAR unit of the n-th bin and

D(hGT
n , hin) =

{
0 if hGT

n = 0 or hin = 0,
max(0,min(hin, (h

GT
n − hin))) otherwise.

(5)

Here, D acts as a clipped difference in which point cloud histograms with higher bin counts than the
ground truth are not penalized. Furthermore, we discard any bin where one or the other histogram
registered no points in order to avoid unfair comparisons. Finally, each bin is weighted by the square
root of the number of points registered, which gives more weight to higher sampling. Table 8 compares
this metric to the loss function for both expert tuning and optimized parameters.

2. Additional Details on LiDAR Simulation and DSP
We model the radiance Λo from a given object located at Ri in 3D space projected onto a sensor at S

with the rendering equation [24]

Λo(v, λ) = Λe(v, λ) +

∫
S+−n

Λi(l, λ)BRDF(v, l,n, λ)(n · l)dl, (6)

where Λe is the light intensity emitted at Ri coming onto S, v = (S−Ri) /∥S −Ri∥ is a unit vector
pointing from Ri to the sensor, n is the surface normal at Ri, l is a unit vector pointing from Ri to
a light source, Λi(l, λ) is the light intensity coming from the direction l and reflected upon arrival,
BRDF(v, l,n, λ) is the Bidirectional Reflectance Distribution Function (BRDF) describing the material
reflectance at Ri, and λ denotes the light wavelength. The integral is carried over S+

−n which is defined
as the unit hemisphere whose base normal vector is equal to −n. Below, we derive the special case of
Eq. (6) for a single emitted LiDAR pulse.

2.1. LiDAR BRDF

LiDAR sensors use narrow band infrared lasers and narrow bandpass filters on the detector side.
Therefore, λ can be treated as confined to a narrow part of the near-infrared spectrum (NIR). For sim-
plicity, we assume λ to be constant and drop it from the equations. We split Λi = ΛLiDAR + Λambient into
two terms, namely the light coming from the LiDAR unit itself (ΛLiDAR), as a LiDAR is its own light
source, and light from other sources (Λambient). We thus rewrite Eq. (6) as

Λo(v) =

∫
S+−n

ΛLiDAR(l)BRDF(v, l,n)(n · l)dl+ a(t), (7)

with
a(t) = Λe(v) +

∫
S+−n

ΛAmbient(l)BRDF(v, l,n)(n · l)dl. (8)

In a(t) we bundle all the light not emitted by the LiDAR itself. a(t) is defined as the ambient illumination
component and is described in more depth in Section 2.3. For ΛLiDAR, all light is coming from the
direction v. Hence, we model the incoming radiation approximately as a beam with Dirac distribution
ΛLiDAR(l) = Λ0δ(l − v) where Λ0 is the light intensity transmitted towards the object by the LiDAR.
This Dirac distribution only leaves us with the retroreflected component of the BRDF,

Λo(v) = Λ0(l)BRDF(v,v,n)(n · v) + a(t). (9)

After rearranging the equation we can then define the object’s reflectivity ρi from the scene reflectivity
as follows,

ρi :=
Λo(v)− a(t)

Λ0

= BRDF(v,v,n)(n · v). (10)

We model this ρi with the Cook-Torrance model [7]: a microfacet model which describes a material
surface as a collection of smaller smooth facets oriented in random directions. It acts as a statistical
model averaging the combined effects of each microfacets. The model splits the BRDF into a linear
combination of two terms: a specular and a diffusive part which can be written as

BRDF(v, l,n) = sBRDFs(v, l,n) + dBRDFd(v, l,n), (11)

where s and BRDFs (resp. d and BRDFd) are the specular coefficient and the specular part of the BRDF
(resp. the diffuse coefficient and the diffuse part of the BRDF). The s and d coefficients are discussed in
Section 2.2. For our simulation, we used a Lambertian model for the diffusive part, that is

BRDFd(v, l,n) = 1. (12)

The specular part of the Cook-Torrance BRDF is

BRDFs(v, l,n) =
F(v,h)D(h,n)G(v, l,n)

4 (n · l) (n · v)
, (13)

where h = (v + l)/∥v + l∥ is a halfway unit vector between v and l, F is a Fresnel term describing
how the light is reflected on each smooth microfacet, G is a geometrical factor averaging the effects of
shadowing and masking by microfacets onto each other and D is a statistical distribution of the number
of facets facing in the direction of h. For F , we adopted the Schlick’s approximation [45], that is

FSchlick(v,h) = F0 + (1−F0)(1− v · h)5, (14)

where F0 is the specular reflectance for wavelength λ. In the case of retroreflection, v = h → v ·h = 1
and therefore F(v,h) = F0 is reduced to a constant. For G, we adopt the same hybrid approach used by
the CARLA engine to render the images [11], where we also adapt the Schlick’s approximation of the
G function derived in the GGX model by Walter et al. [45, 59]. This approach introduces a roughness
parameter α ∈ [0, 1] where α = 0 corresponds to completely smooth surfaces which causes mirror-like
reflections and where α → 1 defines very rough surfaces with almost no specular light propagation. As
described by Smith et al. [50], Schlick et al. [45] and Walter et al. [59], this function can be approximated
by a separable product of visibility functions G(v, l,n) = G(v,n)G(l,n) where G(v,n) (resp. G(l,n))
describes the amount of reflected (resp. incident) non-obstructed light and

G(x,n) = x · n
(x · n)(1− k) + k

, (15)

where k = (α + 1)2/8. In the case of retroreflection where l = v, G reduces to

G(v,v,n) =
cos2 θ

[cos θ(1− k) + k]2
, (16)

where we introduce θ as the angle between the surface normal n and the incident laser ray l. Then,
for the microfacet normal vector distribution function D, we adopted the Trowbridge-Reitz microfacet
model [52], that is

D(h,n) =
α4

((h · n)2(α4 − 1) + 1)2
, (17)

where we reuse the roughness parameter α as described above. In the retroreflective case where h = v,
we can reduce equation (17) to

D(h,n) =
α4

(cos2 θ(α4 − 1) + 1)2
. (18)

Note that in the limit of α → 1, this function is uniform for all incident angles. Finally, by combining
equations (14), (16) and (18) into (13), then combining Eq. (12) and (13) following Eq.(11) with the
definition of Eq. (10) while using the fact that v · n = cos θ, we obtain Eq. (7) of the main paper written
as

ρi =
α4s cos θ

4[cos2 θ(α4−1)+1]2[cos θ(1−k)+k]2
+ d cos θ, (19)

where the d, s and α parameters are set as described in Section 2.2.

Figure 8. Qualitative illustration of the rendered images IC , Isαµ and IRGB done with our proposed shader in the
CARLA simulation pipeline.

2.2. Extracting BRDF Coefficients α, s and d from CARLA

In CARLA, every non-transparent material is described by its diffuse color C, its specular component
s ∈ [0, 1], its roughness α ∈ [0, 1], and its metallic parameter µ ∈ [0, 1] where µ = 1 defines a metal
and µ = 0, a dielectric. We extract these necessary values through a shader. The shader is applied to
the LiDAR full 360° field of view and returns encoded images defined as Isdα. The shaders are spawned
as cameras and the position setup is depicted on the left of Figure 8 where each camera span a 90° field
of view and are rotated 90° with respect to each other. In particular, different shaders allow us to obtain
information like a depth map, semantic map or the optical flow from CARLA [11]. The s, d and α
parameters for each point Ri in the point cloud is then extracted from Isdα following the procedure
detailed in Section 2.4.

To generate Isdα, our shader firstly obtains two three-channel-wide images IC and Isαµ. The first
image IC returns the diffuse colors CR, CG, CB of the scene and the second image Isαµ encodes the
specular component s, the roughness α and the metallicity µ in each of the channels. Examples of IC
and Isαµ are displayed on the right of Figure 2 of the main document and in Figure 8. Since the CARLA
engine does not provide any infrared diffuse color information d, we use the infrared forward model
presented by Gruber et al. [17] to model it based on the diffuse color image IC and metallicity µ stored
in the Isαµ image such that

d = INIR(IC)⊗ (1− µ), (20)

where ⊗ denotes a pixelwise product. The 1 − µ factor takes into account that metallic materials with

µ = 1 have no diffuse component (→ d = 0). INIR converts the diffuse colors image IC into a single
channel image using

INIR(IC) = (0.299Cmax
R + 0.587Cmax

G + 0.114Cmax
B) , (21)

with Cmax
x = max (Cx, 1− Cx) is a pixelwise maximum for each diffuse color channel x ∈ {R,G,B}.

INIR(IC) is also enhanced with a gamma correction of γ = 0.25 to darken the image since it is bright by
design due to the maximum overlay from Cmax

x [17]. For simplicity, we then encode the s, d and α values
into one joint three-channel image Isdα.

Correspondences between extracted point clouds and shader images are established through an ex-
trinsic calibration upon camera placement. As such, the values to compute the BRDF can be found by
projecting the point cloud into the images and matching LiDAR points with pixel values. The projection
procedure is the same to obtain the ambient illumination and is described in Section 2.4.

2.3. Ambient Illumination Model

The wavefront ambient illumination component is modeled as follows

a(t) = Λe(v) +

∫
S+−n

Λambient(l)BRDF(v, l,n)(n · l)dl, (22)

where t denotes the exposure time of each laser diode. While Eq. (22) is modeled as time-independent
in our simulation, in practice, a(t) can be time-dependent if illumination changes at the ns scale. Hence,
for clarity, since a(t) is constant in t, we denote by ai the ambient illumination associated with the point
Ri. We note that the ambient illumination for visible light wavelengths is captured by a passive rendered
RGB image through the CARLA engine. As such, we adopt the same approach as [60] and approximate
Eq. (22) in the NIR band using the red channel of such images, defined as Ired, as it is the closest to the
NIR band. To capture the RGB image, as for the Isdα images, we set up four cameras around the LiDAR
sensor and retrieve the red color channel values for each laser beam through the extrinsic calibration as
for the BRDF parameters (s, d, α). The cameras position setup is depicted on the left of Figure 8 and
details on projecting point cloud data and retrieving the matching ai from Ired is detailed in Section 2.4.

2.4. Point Cloud Projection

Both the scanned BRDF described in Sec. 2.1 and Sec. 2.2 and the ambient light estimation from fully
rendered RGB images described in Sec. 2.3 use images rendered in CARLA for each point cloud frame.
Each image is w = 1280 pixels wide by h = 800 pixels in height and each camera spans a 90° field
of view. The cameras are placed such that the whole 360° FOV around the ego vehicle is covered by
uniformly distributing them along the azimuth viewing angle as depicted on the left of Fig. 8. All 3D
points Ri from a point cloud O are projected onto the camera planes using a projection matrix M before
rounding down the results to get the corresponding pixel coordinates (ui, vi). We note here that we used
the native ray casting LiDAR mechanism from the CARLA engine to get both the 3D point coordinates
Ri and the corresponding incident angle to the surface normal θ. This procedure can be formalized by
Pi(I) which extracts information encoded at the aforementioned pixel coordinates on image I , that is

Pi(I) = I[ui, vi], (23)

where ui, vi are the projected pixel coordinates of the point Ri within image I which are computed usinguivi
1

 =

⌊
1

R̃z
i

M · R̃i

⌋
, (24)

where R̃i is the point Ri expressed in the camera’s frame of reference, R̃z
i is the z component of R̃i with

⌊x⌋ denoting a componentwise floor operation. The camera projection matrix M is the same for every
camera and since we used square camera pixels it is written as

M =

F 0 w/2
0 F h/2
0 0 1

 , (25)

where F = w/(2 tan(FOV)) is the image plane distance to the camera with FOV denoting the camera
field of view. Since the latter is exactly 90° , then we have F = w/2.

2.5. Multipath Pulse Reflections

LiDAR beams can only be collimated to a limited extent for long ranges. For long distances the
beams typically illuminate areas of tens of centimeters. This directly couples object clutter to distance,
e.g., a pedestrian limb at long distances might not be discernible from the torso. When analyzing the
wavefront, this may lead to increased width of the measured peaks or cause disjoint multiple peaks which
can influence the returned point cloud by the LiDAR DSP. In our work, we focus on multiple-echo effects
around object discontinuities as they are a typical source of multipath effects in common scenarios like
clear weather and in dry environments. To this end, we supersample raycast LiDAR measurements first.
We used 128 real LiDAR channels and for each of these channels, we computed 4 extra virtual channels
leading to a total of 640 channels in the upsampled point cloud. Similarly, each channel samples the
360° horizontal FOV with 875 real points and each of them is accompanied by 4 extra virtual points
giving 4375 points per channel in total. Therefore, the maximal number of points in a given upsampled
frame is 4375× 640 = 2.8 million points.

The multipath mixing is implemented linearly over all neighboring virtual points and channels into a
single waveform. This is described by the N (j) (resp. N (m)) set of Eq. (8) in the main document as

ψ
(m)
j (R) =

∑
i∈N (j),n∈N (m)

K
(n)
i (H ∗ g(n))i(R) + ai, (26)

which is the j point itself with its adjacent virtual points (resp. the m channel itself with its adjacent
virtual channels). In our simulation, we usedN (j) = {j− 2, j− 1, j, j+1, j+2}; similarly forN (m).
In other words, each multi-echo waveform is a linear combination of |N (j)| × |N (m)| = 25 single-
echo sub-waveforms. In Eq. (26), m and j make leaps of 5 in order not to have beam overlaps, i.e.,
j ∈ {2, 7, 12, . . . , 4372} and m ∈ {2, 7, . . . , 637} with indices starting at 0. Thus, this can be viewed
as a strided convolution where each stride step equals the kernel size. We translate unregistered LiDAR
points as having an infinite distance which makes their single-echo sub-waveform equal to the ambient
illumination component ai only. For the normalized linear coefficientsK(n)

i , we define that they describe
a Gaussian beam profile where the center of the beam has the highest contribution while the furthest has
the least, that is

K
(n)
i = A× 2−R(i)2−R(n)2 , (27)

where R(z) ≡ z mod 5− 2 and A = 1/4.515625 is the normalization factor such that the sum of K(n)
i

over all indices of the same beam is 1.

2.6. Additional Details on Sensing and DSP Model

Environment perception by LiDAR sensors depends on the waveform generation and subsequent peak
distance and intensity estimation. Within our simulation pipeline, this translates to point cloud calcula-
tions depending not only on the threshold parameter V (m), but on the laser peak power P (m)

0 and width
τ (m) as well. Moreover, these parameters are also fed to the DSP in order to reconstruct the distance R,
denoted Φ(R)(Θ), and scaled target reflectivity ρ/R2, denoted Φ(I)(Θ). Thereby, the designed intensity
calibration can have different levels [25]. They range from level zero where uncalibrated intensity values
are provided by the sensor to a level three rigorous radiometric calibration providing true scene reflec-
tivies consistent across different sensors. In our work, for a given channel m and point j, we optimize
the LiDAR to reconstruct the distance associated with the beam center distance Rj for channel m and
the integrated beam intensity

I
(m)
j =

∑
i∈N (j),n∈N (m)

K
(n)
i

CP
(n)
0 ρi

4R2
i

. (28)

Assuming a typical rotating scanning setup [20], each channel m is equipped with one dedicated
laser diode and detector. Therefore, we assume that the sensing parameters pulse peak power P (m)

0 and
beam width τ (m) can be set independently per layer m. For longer distances, especially, an increased
power P (m)

0 is interesting as it can compensate for power loss due to beam divergence while lower power
levels can prevent sensor oversaturation due to strong retroreflectors and short distances. In addition, the
Velodyne-style LiDAR sensor [20] is split into two different sub units. This inspired us (see Section 3.5
of the main document) to optimize the sensing parameters for the lower 64- and upper 64-lasers blocks
independently. Within each block the parameters P (m)

0 , τ (m) are adjusted via an affine step-function φ
of the channel index which can be written as

φ(m) =
∑
l

ωlξl(m), (29)

where ωl ∈ {P0, τ} is one of the allowed LiDAR parameter and we sum over all l possible parameters.
The value ξl determines if a parameter

ξl(m) =

{
1 if l ≤ s ·m+ b < l + 1

0 otherwise.
(30)

The thresholds V (m) ∈ [0, 2] are modeled as tunable continuous parameters which are set to be the
same across all channels within a group:

V (m) =

{
V1 if 0 ≤ m ≤ 63

V2 otherwise.
(31)

Thus, as seen by the optimizer, we have Θ = {sP0
1 , s

P0
2 , b

P0
1 , b

P0
2 , s

τ
1, s

τ
2, b

τ
1, b

τ
2, V1, V2} where the sub-

script denotes the group of LiDAR channels. Therefore, the optimizer has a total of 10 knobs to tune in

total. We considered peak power and pulse width as discrete parameters: P (m)
0 ∈ {10, 110, 210, . . . 1010}

and τ (m) ∈ {3, 4, . . . , 15} ns. Before feeding the signal ψ(m)
j into the DSP it is discretized into temporal

bins r(m)[k] with size ∆ = 0.2 ns,

r(m)[k] ∼ Poisson

(∫ (k+1)∆

k∆

ψ(m)(t)dt

)
, (32)

where each measured intensity value is Poisson distributed due to the underlying photodiode measuring
process [22, 37, 39, 49]. Subsequently, the DSP’s Φ(R,I)(Θ) task is to identify the dominant scene re-
sponse and to return the distance Rj and integrated beam intensity I(m)

j from each measured wavefront
j and channel m. Firstly, the measurement noise is reduced through a matched filter [54]. The filter
uses the same shape and width as the emitted pulse g(m) described by Eq. (4) of the main paper. As the
maximal measurement distance is two to three orders of magnitudes higher than the emitted pulse width
τ (m)c, the background ambient illumination occupies most of the measurement bins of the waveform.
Therefore, the median is a reasonable estimator for the ambient value a(t) which is then subtracted from
the captured waveform. The result is then clipped to a lower value of 0. Next, the remaining elevations
in the waveform can be seen as returned peaks from the scene. Similar to [29], a rising edge detector
with threshold V (m) is used to identify the true scene response, which corresponds to the scene distance
Rj of this particular beam m. If multiple peaks are visible we return the distance to the peak with the
highest intensity value.

Finally, to extract I(m)
j , we divide the estimated peak maximum with the emitted pulse power multi-

plied by the half pulse width P (m)
0 τ (m)/2. Then, both estimated values Φ(R)(Θ) and Φ(I)(Θ) can be fed

into the optimization process to match the ground truth scene’s values.

2.7. Model Limitations and Possible Extensions

As mentioned in Section 2 of the main document, a growing body of work uses LiDAR simulation
models in order to develop and assess 3D detection pipelines [2,11,13,15,18,19,23,26,31,36,41,44,51,
58, 60]. Our simulation model differs from existing ones in that it includes wavefront sensing and DSP
modelling. The closest existing model is the AIODrive [60] dataset as it models beam divergence, SPAD
quantization and ambient illumination. Indeed, this work uses similar approaches for the SPAD quan-
tization and ambient illumination (see Equation (32) in Section 2.6 and Equation (22) in Section 2.3).
Furthermore, AIODrive’s depth convolution approach is similar to our supersampled ray casting ap-
proach (see Section 2.5: Equation (26)). However, the only information returned by this dataset related
to the PC is the final peak positions and heights whereas the rest of the waveform is not modelled. Addi-
tionally, contrary to most simulation engines that model infrared light reflection intensity using a simple
Lambertian diffusion model, we instead developed an infrared BRDF based on the CARLA engine’s
image rendering models (see Section 2.1 and 2.2). Combined with a DSP model, our approach could
also be generalized to include more real LiDAR effects into the simulation. This is discussed below.
Motion Artifacts can be modeled for each beam and the accumulated point cloud. Hereby, there is
a difference to cameras where the effects are mostly known as motion blur [27]. In cameras a blur
kernel mixes neighboring pixels due to long exposure times. Typical mechanical spinning LiDARs (e.g.,
Velodyne HDL-32E) as used in our simulation pipeline use microsecond exposure times per point for
each of their simultaneous scanning lasers. Therefore, the mixing of different beams can be ignored in
our simulations. However, for continuous wave LiDARs, this effect is important [62], as those LiDARs

can estimate the relative velocity of objects nearby from measuring directly the doppler shift. This
however changes entirely the waveform modeling, as well as the downstream processing.
Rolling Shutter and Motion-Scan Effects occur on system level for the generated point cloud. Typ-
ically, LiDARs scan the environment and emit sequentially single laser pulses due to eye safety con-
straints and limited detector resolution. Since a large body of work [32, 47] related to the removal of
those system level scan artifacts from known ego vehicle motion already exists, these temporal sampling
artifacts were ignored in our simulation to increase efficiency.
Adverse Weather. Augmentation models have been developed in order to simulate adverse weather
effects on real LiDAR point clouds obtained in clear weather, e.g., [18,19]. One could adapt these meth-
ods to modify the raw wavefront generation either at the downsampling step (see Equation (26) in Sec-
tion 2.6) and/or at the returned echo formulation (Equation (4)-(6) of the main document). Furthermore,
as the CARLA engine readily supports wetness texture changes [11], these changes could be directly
incorporated through the BRDF (Section 2.1) and the ambient illumination (Section 2.3) equations.

3. Optimization
In this section we review the concept of Pareto optimality and motivate the search for “balanced”

MOO solutions. We justify the proposed stable max-rank loss both as a scalarization and as a final
selection criterion within the Pareto front, the latter being applicable to any set of hyperparameter vectors
for which losses are known and consequently any algorithm. We provide additional details regarding
Algorithm1 from the main document, and we exhaustively list the differences and similarities between
the proposed optimization method and related work of Mosleh et al. [34] and Robidoux et al. [43].

3.1. Pareto Domination and Optimality

Basically, Pareto optimality means “No pain, no gain”: A configuration is Pareto-optimal if you cannot
make anything better without making something worse.

A configuration is Pareto-dominated if it is possible to improve the value of one loss without making
another worse. In the notation of the main document (Ll stands for the lth loss among the L multiple
objectives):

Definition 1 (Pareto Domination) The hyperparameter vector Θ is Pareto-dominated if

∃Θ̂ :
(
∃l ∈ {1, . . . ,L} : Ll(Θ̂) < Ll(Θ)

)
and

(
∀l ∈ {1, . . . ,L} : Ll(Θ̂) ≤ Ll(Θ)

)
. (33)

The first clause formalizes “make something better”; the second, “without making anything worse.” Θ̂
dominates Θ if they simultaneously hold.

Pareto domination defines a partial ordering: Θ̂ < Θ if Θ̂ dominates Θ. The Pareto front is the set
of minimal elements for this ordering. The elements of the Pareto front, the Pareto points, are said to be
Pareto-optimal. In other words:

Definition 2 (Pareto Optimality) The hyperparameter vector Θ is Pareto-optimal if

∀Θ̂ :
(
∀l ∈ {1, . . . ,L} : Ll(Θ) ≤ Ll(Θ̂)

)
or

(
∃l ∈ {1, . . . ,L} : Ll(Θ) < Ll(Θ̂

)
. (34)

Loss values are usually only known for a relatively small subset of all valid hyperparameter vectors.
Leaving aside loss noisiness issues, we consequently only know for certain when an hyperparameter
vector is not Pareto-optimal. An hyperparameter vector which is not Pareto-dominated by any of the
hyperparameter vectors with known losses may have an unknown dominator. A common abuse of ter-
minology consists of restricting Pareto-optimality to hyperparameters with known losses. The Pareto
front is then understood to be the set of hyperparameter vectors with known losses which are not domi-
nated by another with known losses.

3.2. Balanced MOO Solutions

Because sensing hardware and DSPs are configured with one single hyperparameter vector [33,34,36,
40, 42, 43, 53, 61], not a set of them, we are not interested in the entire Pareto front. Without some way
for users of selecting “the one” from the alternatives, a set of better solutions cannot be the final answer
even if each of them is a significant improvement over default or expert-tuned hyperparameters. As
seen in Figures 3, 4 and 5, quality solvers generally find many Pareto points (relative to each run’s data).
Although returning the entire Pareto front allows users to use their own criteria, a sensible default should
be provided. Mosleh et al. [34] and Robidoux et al. [43] use the last Pareto point of an optimization run:
In the following, we improve on and generalize this choice. We first identify Pareto points unlikely to
be worthy candidates and that consequently should be excluded. Then, we present a selection criterion,
applicable to any set of hyperparameter vectors with known losses, that naturally excludes them.

There is another, more fundamental reason why the Pareto front is not relevant in its entirety. Consider
the following setting: An hyperparameter vector Θ which minimizes one loss—that is, a solution to a
single objective optimization (SOO) problem—is automatically in the Pareto front of any MOO problem
which includes this loss among its objectives provided there is no hyperparameter vector that ties its
minimizing loss value. To see this, note that every Θ̂ ̸=Θ then satisfies the second clause of Eq. (34),
while Θ̂ = Θ always satisfies the first. Such single objective minimizers, however, often yield large
values for one or more of the other loss components. An experiment that illustrates this is discussed in
Sec.1.5. In other words, if losses do not conflict why use multi-objective optimization? For this reason,
Pareto-optimal solutions that minimize one loss component are generally not desirable in MOO (e.g.,
detecting one class only, or only optimizing for precision but not recall). Not only does this show that
single-loss minimizers are generally not of practical import for genuinely multi-objective problems, this
justifies searching for balanced MOO solutions, namely solutions for which all loss components have
“good”, or at least as good as possible, values.

We argue here about “good”. How do we know which element of the Pareto front is (likely to be) best?
We saw that “The Pareto point which minimizes one or other of the losses” is unlikely to be desirable
in practice. In the context of scalarizing for optimization with single objective CMA-ES, Mosleh et
al. [34] proposed the following: A good compromise is one for which every loss value ranks well when
compared to the values of the same loss within a relevant population. This choice satisfies the following
constraint on the choice of selection criterion, constraint which is automatically satisfied if one uses
ranks [21]: Whatever criterion is used should be nondimensional so that scale mismatches between
losses not introduce bias. Using this principle within a Chebyshev scalarization [12], that is, a weighted
max so that, by design, the scalarization tries to simultaneously keep all ranks low, directly leads to the
following generally applicable definition of the weighted max-rank loss:

Definition 3 (Weighted Max-Rank Loss) Let {Θq}Qq=0 be a collection of hyperparameter vectors, let

{Lq = (L1(Θ
q), . . . ,LL(Θ

q))}Qq=0 (35)

be the corresponding values of the loss vectors, let (w1, . . . ,wL) be a collection of positive weights, and
let the rank of Θp with respect to the loss component Ll be

Rp
l = rank of Ll(Θ

p) within {Ll(Θ
q)}Qq=0 (36)

with ranks counted from 0 and loss component value ties resolved by left bisection (per Mosleh et al.) or
with the proposed stable averaging of the left and right bisection (minus 1) ranks, where the average is
set to 0 whenever the left bisection rank vanishes. Then, the weighted max-rank loss of Θp with respect
to {Θq}Qq=0 is

Mp = max
l∈{1,...,L}

(wl · Rp
l) . (37)

Note that if there are no loss value ties, the two max-ranks (left bisection and stable) are equal (sub-
tracting 1 from the right bisection rank, as proposed, so that it starts at 0 when there are no ties even
before averaging, is required for this to hold).

The proposed selection criterion is now:

Definition 4 ((Balanced) Pareto Point Selection Criterion) Choose the Pareto point Θp with lowest
max-rank lossMp (computed over the entire run).

Because any weighted max-rank loss minimizer is either a Pareto point or is dominated by a Pareto
point with the same weighted max-rank loss value (this is easy to prove), one loses nothing by restricting
the “smallest max-rank loss” search to the Pareto front.

The proposed selection criterion overcomes a significant flaw of “take the last Pareto point of the
optimization run”: When an optimization method has “restarts” [30], has an exploration pattern which,
instead of converging to a single point, tries to refine the boundary of the Pareto front as a whole (max-
imizing the hypervolume, for example [5]) or that minimizes uncertainty (purposely exploring hyper-
parameters likely to have poor loss values so as to reduce the likelihood of being trapped in a local
minimum), one cannot generally expect the last Pareto point of the run to be the best choice. See Sec.1.6
for an experiment that manifests this issue and demonstrates the value of the proposed selection criterion.

3.3. Optimization Algorithm

For brevity, the improved seatbelting of the proposed method is omitted from the version of Algo-
rithm1 presented in the main document.

Algorithm1 follows the standard structure of a (µ/µW, λ)-CMA-ES (Covariance Matrix Adaptation-
Evolution Strategy) method [21] without restarts [30] as implemented, for example, in the DEAP li-
brary [14], with the major difference that losses are evaluated for the centroid of every generation
(Line 20 of Algorithm 1) instead of for random samples only (Lines 22 and 25). This is why 4P+1
loss evaluations are performed (Lines 20–26), P being the number of hyperparameters being optimized
(the dimension of Θ), even though the standard CMA-ES update (Line 32, see [21] and for example the
DEAP implementation) only uses 4P children. The extra child—namely Θ0,n, the weighted centroid

Algorithm 1 Lidar Hyperparameter Optimization (Unabridged).
Require: Lidar Φ, Θ∈ [0, 1]P (initial hyperparameter vector),

N∈N∗ (number of generations), ε∈(0, 1/3) (small bound),
C∈RP×P (CMA-ES “directional” covariance matrix factor),
σ∈ [ε, 1/3] (square root of covariance matrix “scale” factor)

1: Λ←
√
P/3 (large bound:

√
P = diameter of the unit hypercube)

2: p← 0, c← 0 (CMA-ES path vectors), Θcenter ← Θ
3: for n = 1 to N do
4: Θ0,n ← Θ, C← (C+C⊺)/2, σ ←median(ε, σ, 1/3)
5: if smallest C eigenvalue λmin > 1 then
6: C← C/λmin, c← c/

√
λmin, σ ←min(

√
λminσ, 1/3)

7: end if
8: if smallest σ2C eigenvalue λmin < ε2 then
9: σ ←min(4σ/3, 1/3)

10: end if
11: if smallest σ2C eigenvalue λmin < ε2 then
12: Push C toward the identity by clamping its eigenvalues to

[
ε2/σ2,∞

)
and replacing it by its square root

13: end if
14: if largest C eigenvalue λmax < 1 then
15: C← C/λmax, c← c/

√
λmax, σ ←max(

√
λmaxσ, ε)

16: end if
17: if largest σ2C eigenvalue λmax > Λ2 then
18: Push C toward the identity by replacing it by its square root and clamping its eigenvalues to(

−∞,Λ2/σ2
]

19: end if
20: L0,n ← losses for Lidar Φ modulated by Θ0,n

21: for p = 1 to 4P do
22: Θp,n ← random draw from Gaussian distribution with covariance matrix σ2C centered at Θcenter

23: Θp,n ← Θp,n+ Gaussian distribution with diagonal covariance matrix proportional to the square of
individual hyperparameters’ quantization grain [43]

24: Θp,n ← Θp,n reflected back into [0, 1]P

25: Lp,n ← losses for LiDAR Φ modulated by Θp,n

26: end for
27: Compute {Mq,m,n}q∈{0,...,4P},m∈{1,...,n} by including {Lp,n}p∈{0,...,4P} in rank computations
28: Use “eager” [34] centroid weights with λ = 4P, µ = 3P
29: if n is odd then
30: Use “stable” [43] centroid weights with λ = µ = 4P
31: end if
32: Standard CMA-ES update [21] of Θ, σ, C, p, c based on {Θp,n}p∈{1,...,4P} and {Mp,n,n}p∈{1,...,4P} except

that if theMp,n,n, p ∈ {1, . . . , 4P} are all equal also multiply C by 4/3 and σ by
√

4/3
33: Θcenter ← Θ
34: if min

p∈{0,...,4P}
Mp,n,n< min

q∈{0,...,4P},m∈{1,...,n}
Mq,m,n then

35: Θcenter ← minimizer closest to centroid of minimizers (distance ties resolved arbitrarily)
36: end if
37: end for
38: return Θp,n in the (guaranteed nonempty) intersection of the Pareto front and the set of minimizers of
Mq,m,N , with ties resolved by choosing the one closest to their centroid and remaining ties resolved by
maximizing n, then p

normally only used as center of the next generated anisotropic Gaussian cloud—is used to provide the
greedy CMA-ES branch with one extra, better, candidate, thus improving transients and stability. This
proposed greedy variant of CMA-ES works as follows: If any hyperparameter vector of the generation,
Θ0,n included, is a new “best so far,” that is, is a strict minimizer of the scalarized loss (Line 34), it
replaces the weighted centroid (Line 33) as center of the next generated Gaussian cloud (Line 35).

Such jumps of the random Gaussian cloud center could corrupt the standard CMA-ES path statistics
used to evolve the matrix C (the CMA-ES “directional” covariance matrix factor) and σ (the “scale”
factor of the square root of the covariance matrix) because they assume random Gaussian clouds [21]
and including the cloud’s center would break randomness. Mosleh et al. ignore this issue. Robidoux et
al. prevent spurious jumps in the statistics by resetting path variables to 0 whenever a greedy jump
occurs. This, unfortunately, renders the path machinery impotent when many “best so far” are found
in quick succession, as sometime happens late in the run when performing MOO with a large number
of objectives and hyperparameters. Instead, the proposed method updates the path accumulators first
(Line 32), then moves the Gaussian cloud center to the greedy location (Line 33). Instead of literal path
accumulators, the proposed method consequently uses p and c to cumulate statistics about promising
single steps which are not necessarily taken because possibly overridden by a jump.

Another novel aspect of the proposed method is that, even though generation size is fixed, two dif-
ferent sets of centroid weights are used. Both sets are, in CMA-ES parlance, active [1, 21]. As seen in
Lines 28–31 of Algorithm1, the very first generation uses the boundary-stable weights of Robidoux et al.
without discard, meaning that µ, the number of individuals within the generation with vanishing weights
before redistribution to account for ties, is equal to λ=4P. The boundary-stable weights of Robidoux et
al. alternate with the eager weights of Mosleh et al., which use µ = 3P and λ = 4P. As Nishida et
al. [35] point out, larger generations are empirically known to be preferable with rough or noisy losses.
The reason for using µ = λ, that is, no discard, with the boundary-stabilizing weights instead of the
alternatives documented in [43] is that, with active CMA-ES methods—methods with centroid weights,
some of them negative, monotone as a function of the rank, that discard, as is standard, the worst individ-
uals of the generation—the solver is likely to explore in the wrong direction near generic local minima
because the worst directions implicitly gets vanishing centroid weights while less “bad” directions get
strictly negative ones. This choice makes it less likely that the boundary-stable generation get lost near
minima. In contrast, discarding exactly one quarter of each generation allows Mosleh et al. to exploit the
symmetry between the second and third quartiles of Gaussian distributions to obtain a robust gradient
approximation. Alternating the two types of active weights perform the best in all of our experiments.

For reference, the “eager” weights of Mosleh et al. are defined as follows when λ = 4P and µ = 3λ/4,
as is the case here. With the non-normalized weights

ŵl =

{
2P− 1

2
− l if l ∈ {0, 1, . . . , 3P− 1} , and

0 if l ∈ {3P, . . . , 4P− 1} ,
(38)

the eager weights, assuming that there are no ties within the generation (otherwise weights are averaged
between ties) are

wl = ŵl/

3P−1∑
k=0

ŵk (39)

so that they sum to 1. The “boundary stable” weights of Robidoux et al. are defined similarly: With the
non-normalized weights

w̌l = 1−
√
2

l

4P− 1
for l ∈ {0, 1, . . . , 4P− 1} , (40)

the boundary-stable weights, assuming that there are no ties within the generation, are

wl = w̌l/

4P−1∑
k=0

w̌k. (41)

One major improvement over standard CMA-ES which the proposed method adapted from Mosleh et
al. and Robidoux et al. is the use of a tracking Monte Carlo simulation which better accounts for devi-
ations from randomness than χn statistics given both hyperparameter value quantization and the impact
of boundary conditions.

We now discuss the particulars of the seatbelting of the proposed method (Lines 4–19 and 32). Note
that σ scales like the square root of the covariance matrix C. We use 1/3 as an appropriate upper bound
for σ (Lines 6 and 9 of Algorithm1) because, since we optimize in the unit hypercube [0, 1]P, this implies
that at most about (100% − 99.73%) ÷ 2 = 0.135% of the Gaussian cloud Θs are reflected more than
once by the mirroring boundary conditions when C is close to the identity matrix.

To prevent quantized hyperparameter values from getting stuck in the basin of attraction of an integer,
we add Gaussian noise that scales like the distance between the images of integers within the unit interval
(Line 23). In addition, ε, the minimum allowed σ and eigenvalue of σC

1
2 , is kept fairly large (4/255) to

tilt the convergence vs. exploration balance slightly toward exploration.
CMA-ES directional search directions are scaled by σC

1
2 . Because the diameter of the unit hypercube

[0, 1]P is
√
P and consequently can attain large values (this is the so-called “Curse of Dimensionality”), a

somewhat large upper bound on σC
1
2 ’s eigenvalues, namely Λ =

√
P/3, is used so as to allow the search

to reach the corners of the search space within a reasonable number of iterations (Lines 1 and 17–19).
We also propose ensuring that C

1
2 has at least one eigenvalue no smaller than 1 as well as one no larger

than 1 so that the above bounds make sense. If this does not hold, we simultaneously rescale σ and C
1
2

to make it true while keeping their product unchanged (Lines 5–7 and 14–16). Combined seatbelting of
σ and C

1
2 through their product is a novel feature of the proposed method.

Whenever an eigenvalue of C is too small (because of the active weights, eigenvalues can be negative)
or too large, the proposed method replaces C by its square root before clamping the eigenvalues, the
square root being a somewhat arbitrary choice which does the job of pulling C toward the identity while
retaining more information about preferred search directions than hard clamping. Existing CMA-ES
methods just clamp. Finally, the 4/3 multiplier appears in Lines 9 and 32 owing to the fact that with
eager weights µ=3λ/4.

3.4. Joint Optimization of the LiDAR and the Object Detection CNN

Robidoux et al. [43] jointly optimized a hardware HDR (High Dynamic Range) camera sensor, an ISP
operating in HDR mode, and a CNN for object detection and classification by block coordinate descent.
A similar approach could be used in the present context. This is a future research direction.

References
[1] Dirk V. Arnold and Nikolaus Hansen. Active covariance matrix adaptation for the (1+1)-CMA-ES. In

Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pages 385–392,
2010. 31

[2] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and Juergen
Gall. SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences, Aug. 2019.
arXiv:1904.01416 [cs]. 26

[3] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-Parameter Opti-
mization. In Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.
5, 6, 7

[4] James Bergstra, Daniel Yamins, and David Cox. Making a Science of Model Search: Hyperparameter
Optimization in Hundreds of Dimensions for Vision Architectures. In Proceedings of the 30th International
Conference on Machine Learning, pages 115–123. PMLR, Feb. 2013. ISSN: 1938-7228. 5, 6, 7

[5] Nicola Beume, Boris Naujoks, and Michael Emmerich. SMS-EMOA: Multiobjective selection based on
dominated hypervolume. European Journal of Operational Research, 181(3):1653–1669, Sept. 2007. 8, 9,
10, 11, 13, 29

[6] Ran Cheng, Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. A Reference Vector Guided Evolutionary
Algorithm for Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 20(5):773–
791, Oct. 2016. Conference Name: IEEE Transactions on Evolutionary Computation. 8, 9, 10, 11, 12

[7] Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer graphics. ACM SIGGRAPH
Computer Graphics, 15(3):307–316, Aug. 1981. 20

[8] Kalyanmoy Deb. Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction. In Lihui
Wang, Amos H. C. Ng, and Kalyanmoy Deb, editors, Multi-objective Evolutionary Optimisation for Product
Design and Manufacturing, pages 3–34. Springer, London, 2011. 11

[9] K. Deb and J. Sundar. Reference point based multi-objective optimization using evolutionary algorithms |
Proceedings of the 8th annual conference on Genetic and evolutionary computation. 8, 9, 10, 11, 14

[10] Kalyanmoy Deb and J. Sundar. Reference point based multi-objective optimization using evolutionary algo-
rithms. In Proceedings of the 8th annual conference on Genetic and evolutionary computation, GECCO ’06,
pages 635–642, New York, NY, USA, July 2006. Association for Computing Machinery. 8, 9, 10, 11, 14

[11] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA: An open
urban driving simulator. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg, editors, Proceedings of
the 1st Annual Conference on Robot Learning, volume 78 of Proceedings of Machine Learning Research,
pages 1–16. PMLR, 13–15 Nov 2017. 21, 22, 26, 27

[12] Michael T. M. Emmerich and André H. Deutz. A tutorial on multiobjective optimization: fundamentals and
evolutionary methods. Natural Computing, 17(3):585–609, Sept. 2018. 5, 28

[13] Jin Fang, Dingfu Zhou, Feilong Yan, Tongtong Zhao, Feihu Zhang, Yu Ma, Liang Wang, and Ruigang Yang.
Augmented LiDAR Simulator for Autonomous Driving. IEEE Robotics and Automation Letters, 5(2):1931–
1938, Apr. 2020. arXiv:1811.07112 [cs]. 26

[14] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau, and Christian
Gagné. DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research, 13:2171–2175,
jul 2012. 29

[15] Christopher Goodin, Daniel Carruth, Matthew Doude, and Christopher Hudson. Predicting the influence of
rain on LiDAR in ADAS. Electronics, 8, 2019. 26

[16] Tobias Gruber, Mario Bijelic, Felix Heide, Werner Ritter, and Klaus Dietmayer. Pixel-accurate depth eval-
uation in realistic driving scenarios. In 2019 International Conference on 3D Vision (3DV), pages 95–105.
IEEE, 2019. 16

[17] Tobias Gruber, Frank Julca-Aguilar, Mario Bijelic, and Felix Heide. Gated2depth: Real-time dense lidar
from gated images. In The IEEE International Conference on Computer Vision (ICCV), 2019. 22, 23

[18] Martin Hahner, Christos Sakaridis, Mario Bijelic, Felix Heide, Fisher Yu, Dengxin Dai, and Luc Van Gool.
LiDAR Snowfall Simulation for Robust 3D Object Detection. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022. 26, 27

[19] Martin Hahner, Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Fog simulation on real LiDAR point
clouds for 3D object detection in adverse weather. In IEEE International Conference on Computer Vision
(ICCV), 2021. 26, 27

[20] Ryan Halterman and Michael Bruch. Velodyne HDL-64E lidar for unmanned surface vehicle obstacle de-
tection. In Unmanned Systems Technology XII, volume 7692, pages 123–130. SPIE, May 2010. 25

[21] Nikolaus Hansen. The CMA evolution strategy: A tutorial, 2016. 5, 28, 29, 30, 31

[22] Felix Heide, Steven Diamond, David B Lindell, and Gordon Wetzstein. Sub-picosecond photon-efficient 3d
imaging using single-photon sensors. Scientific reports, 8(1):1–8, 2018. 26

[23] Braden Hurl, Krzysztof Czarnecki, and Steven Waslander. Precise Synthetic Image and LiDAR (PreSIL)
Dataset for Autonomous Vehicle Perception, May 2019. arXiv:1905.00160 [cs]. 26

[24] James T. Kajiya. The rendering equation. In Proceedings of the 13th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’86, pages 143–150, New York, NY, USA, Aug. 1986.
Association for Computing Machinery. 19

[25] Alireza Kashani, Michael Olsen, Christopher Parrish, and Nicholas Wilson. A review of LiDAR radiometric
processing: From ad hoc intensity correction to rigorous radiometric calibration. Sensors, 15(11), 2015. 25

[26] Velat Kilic, Deepti Hegde, Vishwanath Sindagi, A. Brinton Cooper, Mark Foster, and Vishal Patel. LiDAR
light scattering augmentation (LISA): physics-based simulation of adverse weather conditions for 3D object
detection. arXiv preprint 2107.07004, 2021. 26

[27] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiri Matas. Deblurgan: Blind
motion deblurring using conditional adversarial networks. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8183–8192, 2018. 26

[28] Ke Li, Renzhi Chen, Guangtao Fu, and Xin Yao. Two-Archive Evolutionary Algorithm for Constrained
Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 23(2):303–315, Apr. 2019.
Conference Name: IEEE Transactions on Evolutionary Computation. 8, 9, 10, 11, 13

[29] Xiaolu Li, Bingwei Yang, Xinhao Xie, Duan Li, and Lijun Xu. Influence of waveform characteristics on
lidar ranging accuracy and precision. Sensors, 18(4), 2018. 26

[30] Ilya Loshchilov. CMA-ES with restarts for solving CEC 2013 benchmark problems. In 2013 IEEE Congress
on Evolutionary Computation, pages 369–376, 2013. 29

[31] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong, Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan,
Bin Yang, Wei-Chiu Ma, and Raquel Urtasun. Lidarsim: Realistic lidar simulation by leveraging the real
world. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11164–
11173, 2020. 26

[32] Pierre Merriaux, Yohan Dupuis, Rémi Boutteau, Pascal Vasseur, and Xavier Savatier. LiDAR point clouds
correction acquired from a moving car based on CAN-bus data, June 2017. arXiv:1706.05886 [cs]. 27

[33] Anish Mittal, Anush K. Moorthy, and Alan C. Bovik. Automatic parameter prediction for image denoising
algorithms using perceptual quality features. In Human Vision and Electronic Imaging XVII, volume 8291,
pages 110–116. SPIE, Feb. 2012. 28

[34] Ali Mosleh, Avinash Sharma, Emmanuel Onzon, Fahim Mannan, Nicolas Robidoux, and Felix Heide.
Hardware-in-the-Loop End-to-End Optimization of Camera Image Processing Pipelines. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 7526–7535, Seattle, WA, USA,
June 2020. IEEE. 5, 6, 7, 8, 9, 10, 11, 13, 27, 28, 30

[35] Kouhei Nishida and Youhei Akimoto. Population Size Adaptation for the CMA-ES Based on the Estimation
Accuracy of the Natural Gradient. In Proceedings of the Genetic and Evolutionary Computation Conference
2016, GECCO ’16, pages 237–244, New York, NY, USA, July 2016. Association for Computing Machinery.
31

[36] Jun Nishimura, Timo Gerasimow, Rao Sushma, Aleksandar Sutic, Chyuan-Tyng Wu, and Gilad Michael.
Automatic isp image quality tuning using nonlinear optimization. In 2018 25th IEEE International Confer-
ence on Image Processing (ICIP), pages 2471–2475, 2018. 26, 28

[37] Matthew O’Toole, Felix Heide, David B. Lindell, Kai Zang, Steven Diamond, and Gordon Wetzstein. Re-
constructing Transient Images from Single-Photon Sensors. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2289–2297, Honolulu, HI, July 2017. IEEE. 26

[38] Annibale Panichella. An adaptive evolutionary algorithm based on non-euclidean geometry for many-
objective optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
’19, pages 595–603, New York, NY, USA, July 2019. Association for Computing Machinery. 8, 9, 10, 11,
12

[39] Adithya K. Pediredla, Aswin C. Sankaranarayanan, Mauro Buttafava, Alberto Tosi, and Ashok Veeraragha-
van. Signal Processing Based Pile-up Compensation for Gated Single-Photon Avalanche Diodes, June 2018.
arXiv:1806.07437 [physics]. 26

[40] Luke Pfister and Yoram Bresler. Learning Filter Bank Sparsifying Transforms. IEEE Transactions on Signal
Processing, 67(2):504–519, Jan. 2019. Conference Name: IEEE Transactions on Signal Processing. 28

[41] Francesco Pittaluga, Zaid Tasneem, Justin Folden, Brevin Tilmon, Ayan Chakrabarti, and Sanjeev J. Koppal.
Towards a MEMS-based Adaptive LIDAR, Oct. 2020. arXiv:2003.09545 [cs, eess]. 26

[42] Geoffrey Portelli and Denis Pallez. Image signal processor parameter tuning with surrogate-assisted particle
swarm optimization. In Lhassane Idoumghar, Pierrick Legrand, Arnaud Liefooghe, Evelyne Lutton, Nicolas
Monmarché, and Marc Schoenauer, editors, Artificial Evolution - 14th International Conference, Évolution
Artificielle, EA 2019, Mulhouse, France, October 29-30, 2019, Revised Selected Papers, volume 12052 of
Lecture Notes in Computer Science, pages 28–41. Springer, 2019. 28

[43] Nicolas Robidoux, Luis E. Garcia Capel, Dong-eun Seo, Avinash Sharma, Federico Ariza, and Felix Heide.
End-to-End High Dynamic Range Camera Pipeline Optimization. In 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 6297–6307, 2021. 7, 27, 28, 30, 31, 32

[44] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M. Lopez. The SYNTHIA
Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 3234–3243, June 2016. ISSN:
1063-6919. 26

[45] Christophe Schlick. An Inexpensive BRDF Model for Physically-based Rendering. Computer Graphics
Forum, 13(3):233–246, 1994. 21

[46] Haitham Seada and Kalyanmoy Deb. A Unified Evolutionary Optimization Procedure for Single, Multi-
ple, and Many Objectives. IEEE Transactions on Evolutionary Computation, 20(3):358–369, June 2016.
Conference Name: IEEE Transactions on Evolutionary Computation. 8, 9, 10, 11, 14

[47] Mao Shan, Julie Stephany Berrio, Stewart Worrall, and Eduardo Nebot. Probabilistic egocentric motion
correction of lidar point cloud and projection to camera images for moving platforms. In 2020 IEEE 23rd
International Conference on Intelligent Transportation Systems (ITSC), pages 1–8, 2020. 27

[48] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. PV-
RCNN: Point-voxel feature set abstraction for 3D object detection. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 16

[49] Dongeek Shin. Computational imaging with small numbers of photons. Thesis, Massachusetts Institute of
Technology, 2016. Accepted: 2016-07-18T20:05:44Z. 26

[50] B. Smith. Geometrical shadowing of a random rough surface. IEEE Transactions on Antennas and Prop-
agation, 15(5):668–671, Sept. 1967. Conference Name: IEEE Transactions on Antennas and Propagation.
21

[51] Tao Sun, Mattia Segu, Janis Postels, Yuxuan Wang, Luc Van Gool, Bernt Schiele, Federico Tombari, and
Fisher Yu. SHIFT: a synthetic driving dataset for continuous multi-task domain adaptation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 21371–21382,
June 2022. 26

[52] T. S. Trowbridge and K. P. Reitz. Average irregularity representation of a rough surface for ray reflection.
JOSA, 65(5):531–536, May 1975. Publisher: Optica Publishing Group. 21

[53] Ethan Tseng, Felix Yu, Yuting Yang, Fahim Mannan, Karl ST. Arnaud, Derek Nowrouzezahrai, Jean-
François Lalonde, and Felix Heide. Hyperparameter optimization in black-box image processing using
differentiable proxies. ACM Transactions on Graphics, 38(4):1–14, Aug. 2019. 28

[54] G. Turin. An introduction to matched filters. IRE Transactions on Information Theory, 6(3):311–329, 1960.
26

[55] Peter O’Connor (https://github.com/petered). Artemis. https://github.com/QUVA-
Lab/artemis/tree/peter, 2018. 9

[56] Lucien S. (https://stackoverflow.com/users/1208142/lucien-s). Fast calculation of
pareto front in python. URL: https://stackoverflow.com/q/32791911/6362595 (version:
2023-03-24). 9

[57] Yash Vesikar, Kalyanmoy Deb, and Julian Blank. Reference Point Based NSGA-III for Preferred Solutions.
In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1587–1594, Nov. 2018. 8, 9,
10, 11, 14

[58] Niclas Vödisch, Ozan Unal, Ke Li, Luc Van Gool, and Dengxin Dai. End-to-End Optimization of LiDAR
Beam Configuration for 3D Object Detection and Localization. IEEE Robotics and Automation Letters,
7(2):2242–2249, Apr. 2022. Conference Name: IEEE Robotics and Automation Letters. 26

[59] Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance. Microfacet models for refraction
through rough surfaces. In Proceedings of the 18th Eurographics conference on Rendering Techniques, pages
195–206, 2007. 21

[60] Xinshuo Weng, Yunze Man, Jinhyung Park, Ye Yuan, Dazhi Cheng, Matthew O’Toole, and Kris Kitani.
All-In-One Drive: A Large-Scale Comprehensive Perception Dataset with High-Density Long-Range Point
Clouds. arXiv, 2021. 23, 26

https://github.com/petered
https://github.com/QUVA-Lab/artemis/tree/peter
https://github.com/QUVA-Lab/artemis/tree/peter
https://stackoverflow.com/users/1208142/lucien-s
https://stackoverflow.com/q/32791911/6362595

[61] Chyuan-Tyng Wu, Leo F. Isikdogan, Sushma Rao, Bhavin Nayak, Timo Gerasimow, Aleksandar Sutic, Liron
Ain-kedem, and Gilad Michael. VisionISP: Repurposing the image signal processor for computer vision
applications. In IEEE International Conference on Image Processing (ICIP), pages 4624–4628, 2019. 28

[62] Ji Zhang and Sanjiv Singh. LOAM : LiDAR odometry and mapping in real-time. Robotics: Science and
Systems Conference (RSS), 2014. 26

