
A. Additional Ablations

In Section 5, we performed various ablations to un-
derstand the empirical effectiveness of FLYP . Here we
present some additional ablations like (a) effect of changing
the number of prompt templates used, (b) effect of batch-
size, and (c) jointly optimizing both cross-entropy and con-
trastive loss. We observe that FLYP ’s performance is quite
robust to changes in number of prompt templates used or
the batch-size as discussed in detail below.

Number of prompt templates. We test whether FLYP’s
gains come from sampling different text prompts while
training. To do so, we experiment on ImageNet using a sin-
gle text-description template instead of 80 templates as used
in Wortsman et al. (2021), and observe that finetuning accu-
racy of FLYP is not affected by the number of text-templates
used. We also note that for datasets like PatchCamelyon,
SST2, and Flowers, experiments in Section 4 use only a sin-
gle template as provided in Radford et al. (2021), and still
outperform all the baselines.

Recall from Section 3 that for every given image-label
pair (x, y), we construct a corresponding image-text pair
(I, T ), where T is sampled from a set of text-descriptions
Ty . For example, for every class, possible text descrip-
tions in Ty can be “a photo of a {class}”, “a painting
of a {class}”, “{class} in wild”, etc. For all our experi-
ments on all the datasets, we use the same text-templates
as used in CLIP (Radford et al., 2021) and WiseFT (Worts-
man et al., 2021). Figure 4 compares FLYP with baselines
when only a single text-description template is used on Im-
ageNet (the default template of “a photo of a {class}” as
given in Radford et al. (2021)). We observe no change in
the accuracy of FLYP both ID and OOD (without zeroshot
ensembling) when using a single template or 80 templates.
Note that since the corresponding zeroshot head is also con-
structed using a single text-description, there is a slight drop
in ensembling accuracy (due to a decrease in the zeroshot
model’s performance) for all the baselines as expected.

Adding cross-entropy loss to FLYP . In Section 5 we ob-
served that updating both the encoders using cross-entropy
loss degrades the performance. Here we compare the per-
formance of FLYP when the cross-entropy loss is added to
FLYP’s objective (i.e. the contrastive loss). On ImageNet,
as shown in Figure 5, the weight ensembling curve for
FLYP (orange) completely dominates (lies above and to the
right) those of when the cross-entropy loss is added to FLYP
’s objective under various regularization strengths. Simi-
larly, on iWILDCam, adding cross-entropy loss (in equal
weightage) leads to a drop of 2.64% ID and 0.5% OOD, as
shown in Table 4. The performance degrades further, as the
weight of cross-entropy loss is increased.
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Figure 4. FLYP ’s performance is unaffected by the number of
prompt templates used. Here we compare using a single template
versus 80 templates for text-descriptions on the ImageNet dataset.
Observe that FLYP with a single template gives the same ID and
OOD accuracy as FLYP with 80 templates, without ensembling.
Note that the zeroshot model is also constructed using a single
template, which causes a drop in it’s accuracy, similar to the ob-
servations in Radford et al. (2021).
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Figure 5. Adding cross-entropy loss to FLYP’s objective degrades
the performance on ImageNet.

FLYP with iWILDCam FMOW

CE loss ID OOD ID OOD

FLYP 53.03 38.09 68.56 40.76

FLYP + FT 50.39 37.59 69.02 39.45
FLYP + 10 * FT 48 35.35 68.45 39.45

FT 47.99 34.77 68.47 39.53

Table 4. Adding cross-entropy loss to FLYP’s objective (with
various regularization) decreases the performance both ID and

OOD.

Effect of batch-size on FLYP . Batch-size has been ob-
served to cause variations in performance when using con-
trastive loss (Chen et al., 2020). As mentioned in Sec-
tion 4, we use a fixed batch size of 512 for ImageNet and
256 for the rest of the datasets. We perform additional ex-
periments with a lower batch-size (half of the previous). On
ImageNet, a lower batch-size of 256 gives similar ID accu-
racy as batch-size of 512. However we observe a slight drop
of 1% in the OOD accuracy. On iWILDCam, with a lower
batch-size of 128, we get a similar ID and OOD accuracy
as the batch-size of 256. However, on FMOW, we again ob-
serve a drop in OOD accuracy of 0.5%.



B. Additional Results

B.1. SOTA on WILDS-iWILDCam

Table 5 compares FLYP with the leaderboard on iWILD-
Cam benchmark (Koh et al.). As discussed in Section 4,
FLYP gives gains of 2.3% ID and 2.7% OOD over the top
of the leaderboard, outperforming compute heavy Model-
Soups (Wortsman et al., 2022), which ensembles 70+ dif-
ferent models finetuned using different augmentations and
hyperparameters.

Architecture ID Macro F1 OOD Macro F1

FLYP ViTL-336px 59.9 (0.7) 46.0 (1.3)
Model Soups ViTL 57.6 (1.9) 43.3 (1.)

ERM ViTL 55.8 (1.9) 41.4 (0.5)
ERM PNASNet 52.8 (1.4) 38.5 (0.6)

ABSGD ResNet50 47.5 (1.6) 33.0 (0.6)

Table 5. FLYP (with ensembling) achieves highest reported ac-
curacy both ID and OOD on WILDS-iWILDCam. We compare
FLYP with the top 4 entries on the leaderboard (Koh et al.).

B.2. Few-shot classification using CLIP ViT-L/14

In Section 4.2.1, we considered a challenging task of bi-
nary few-shot classification on 2 datasets of PatchCame-
lyon and SST2, using CLIP ViT-B/16. Here we perform
a similar comparison, although using a much bigger model
of CLIP ViT-L/14. Table 6 compares FLYP with baselines
on 2 datasets of SST2 and PatchCamelyon. We observe
that similar to the case of using smaller CLIP ViT-B/16 (Ta-
ble 2), FLYP outperforms the baselines when a larger model
of CLIP ViT-L/14 is used. For example, under 32-shot clas-
sification, FLYP outperforms LP-FT by 4.2% on SST2 and
3.1% on PatchCamelyon.

SST2 PatchCamelyon
Methods

4 Shot 16 Shot 32 Shot 4 Shot 16 Shot 32 Shot

Zeroshot 68.9 (-) 68.9 (-) 68.9 (-) 62 (-) 62 (-) 62 (-)

LP 69.2 (0.2) 70.2 (0.4) 71.0 (0.4) 66.9 (0.8) 71.2 (1.1) 74.1 (0.9)

FT 69.3 (0.1) 69.5 (0.2) 70.0 (0.4) 65.9 (0.7) 69.9 (0.7) 71.8 (0.8)

LP-FT 69.3 (0.3) 70.7 (0.4) 71.3 (0.4) 67.5 (0.8) 72.9 (1.0) 76.0 (0.5)

FLYP 69.8 (0.7) 73.2 (0.8) 75.5 (0.6) 67.8 (1.2) 75.8 (0.9) 79.1 (0.7)

Table 6. Binary few-shot classification using CLIP ViT-L/14.
FLYP continues to outperforms the baselines. For example, un-
der 32-shot classification, FLYP outperforms LP-FT by 4.2% on
SST2 and 3.1% on PatchCamelyon.

B.3. ImageNet Distribution Shifts - Detailed Results

Table 7 gives the detailed results on each individual as-
sociated distribution shifts with the ImageNet dataset, in
the same experiment setting as Section 4.1. Observe that
with weight ensembling, FLYP consistently outperforms
the baselines across all the distribution shifts.

C. Hyperparameter details
For all algorithms on all the datasets (apart from Ima-

geNet), we perform a hyper-parameter sweep over 5 learn-
ing rates in {1e−2, 1e−3, ..., 1e−6} and 5 weight decay in
{0.0, 0.1, ..., 0.4}, with a fixed batch-size of 256. For Im-
ageNet, due to computational cost, we perform a sweep
over 3 learning rates in {1e-4, 1e-5, 1e-6} and 2 weight de-
cay in {0.0, 0.1} and use a batch-size of 512. L2-SP re-
quires tuning a additional regularization term weight λ ∈
{1e−1, 1e−2, ..., 1e−4}.

We early stop and choose the best hyper-parameter based
on the ID Validation accuracy. For the datasets which do not
have a publicly available validation split, we split the train-
ing dataset in 80:20 ratio to make a training and a validation
set. In all the cases, note that the OOD dataset is used only
for evaluation purposes.

For the k few-shot classification setting (where k ∈
{4, 16, 32}), we randomly sample k training and k valida-
tion points from the respective full datasets and repeat the
process 50 times, due to increased variance caused by a
small training and validation set. We finally report the mean
test accuracy over the 50 runs, corresponding to the hyper-
parameter with the lowest mean validation loss over the 50
runs.



ImageNet Distribution Shifts ImageNet Distribution Shifts (with ensembling)
Methods ID Im-V2 Im-R Im-A Sketch ObjectNet Avg. OOD ID Im-V2 Im-R Im-A Sketch ObjectNet Avg. OOD

Zeroshot 68.3 61.9 77.7 50.0 48.3 55.4 58.7 68.3 61.9 77.7 50.0 48.3 55.4 58.7
LP 79.9 69.8 70.8 46.4 46.9 52.1 57.2 80.0 70.3 72.4 47.8 48.1 52.8 58.3
FT 81.3 71.2 66.1 37.8 46.1 53.3 54.9 82.5 72.8 74.9 48.1 51.9 59.0 61.3

L2-SP 81.7 71.8 70.0 42.5 48.5 56.2 57.8 82.2 72.9 75.1 48.6 51.4 58.9 61.4
LP-FT 81.7 72.1 73.5 47.6 50.3 58.2 60.3 82.1 72.8 75.3 50.1 51.7 59.2 61.8

FLYP 82.6 73.0 71.4 48.1 49.6 58.7 60.2 82.9 73.5 76.0 53.0 52.3 60.8 63.1

Table 7. FLYP compared with baselines on each of the associated distribution shifts with the ImageNet dataset. Note that with weight
ensembling, FLYP consistently outperforms all the baselines on all the distribution shift benchmarks as well as ID.
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