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B. Implementation Details
B.1. Complete Algorithm

In Algorithm 1, we provide the pseudocode of contin-
ual learning with the proposed BFP method. Note that fol-
lowing [8], we sample training datapoints from the memory
buffer for each loss independently. We empirically find this
results in better performance than using the same set of re-
played samples for all losses. The images without augmen-
tation xo are pushed into the memory and replayed images
are augmented on the fly. The classification model is trained
using an SGD optimizer (sgd) and the projection matrix A
is trained using an SGD+Momentum optimizer (sgdm).

B.2. Class-balanced Reservoir Sampling

We adopt the class-balanced reservoir sampling
(BRS) [9] for memory buffer management. The detail
of this algorithm is described in Algorithm 2. Compared
to regular Reservoir Sampling (RS), BRS ensures that
every class has an equal number of examples stored in
the memory buffer. All experiments are incorporated with
this change. Empirically we find that BRS does not bring
significant changes compared to RS, but it helps to reduce
variance in the results.

B.3. Training details

Image sizes are 32 × 32 in Split-CIFAR10 and Split-
CIFAR100 and 64 × 64 in Split-TinyImageNet. All exper-
iments use the same data augmentation procedure, applied
on input from both the current task and the memory buffer
independently. Data augmentation includes a full-size ran-
dom crop with a padding of 4 pixels, a random horizontal
flip, and normalization.

For all experiments involving BFP, the optimizer for the
matrix A is an SGD+Momentum optimizer with a learning
rate of 0.1 and momentum of 0.9. The weighting term γ in
Equation 12 is 1. Empirically we find that the BFP perfor-
mance is not sensitive to these hyperparameters, and we use
this one set of hyperparameters for BFP loss in all experi-
ments.

B.4. Hyperparameters

In this section, we list the best hyperparameters used for
the compared baselines mentioned in Section 4.2 and their
results are reported Table 1. These hyperparameters are
adopted from [8] and [7], where they were selected by a hy-

Algorithm 1 - Continual Learning with BFP

Input: dataset {D1, · · · ,DT }, parameters θ = {ϕ, ψ}, scalars
α, β and γ, optimizer sgd, sgdm,
M ← {}
for t from 1 to T do
A← random-init()
sgdm← reinit(sgdm)
for (xo, yo) in Dt do
x, y ← augment(xo, yo)
L← cross-entropy(y, fθ(x)) {Eq. 8}
if t > 1 then
x, y ← augment(sample(M))
Lrep-ce ← cross-entropy(y, fθ(x)) {Eq. 9}
x, y ← augment(sample(M))
Lrep-logits ← ∥fθ(x)− fold(x)∥2 {Eq. 10}
x, y ← augment(sample(M))
LBFP ← ∥Ahψ(x)− hold(x)∥2 {Eq. 11}
L = L+ Lrep-ce + Lrep-logits + LBFP {Eq. 12}

end if
θ ← sgd(θ,∇θL)
A← sgdm(A,∇AL)
M ← balanced-reservoir(M, (xo, yo)) {Alg. 2}

end for
fold = freeze(fθ)

end for
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Algorithm 2 Balanced Reservoir Sampling [9]

1: Input: replay buffer M , exemplar (x, y),
2: number of seen examples N .
3: if |M | > N then
4: M [N ]← (x, y)
5: else
6: j ← RandInt([0, N ])
7: if j < |M | then

8: M [j]← (x, y)

Reservoir Sampling

9: ỹ ← argmax ClassCounts(M,y)
10: k ← RandChoice({k̃;M [k̃] = (x, y), y = ỹ})
11: M [k]← (x, y)

Balanced Reservoir Sampling

12: end if
13: end if

perparameter search conducted on a held-out 10% training
set for validation. Please refer to [7, 8] for further details.

The proposed BFP only introduced a single hyperpa-
rameter γ, which is set to a constant value of 1 through-
out all experiments and does not need extra tuning. Other
hyperparameters like α and β are inherited from ER and
DER++ [8] and we simply adopt the same set of hyperpa-
rameters from [8]. We do not further tune or modify them.

B.4.1 Split CIFAR-10

FT: lr = 0.1

JT: lr = 0.1

Buffer size = 200
iCaRL: lr = 0.1, wd = 10−5

FDR: lr = 0.03, α = 0.3
LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20,
lr = 0.03, lrfitting = 0.01, m = 0.5
BiC: τ = 2, epochsBiC = 250, lr = 0.03
ER-ACE: lr = 0.03
ER: lr = 0.1
DER++: lr = 0.03, α = 0.1, β = 0.5

Buffer size = 500
iCaRL: lr = 0.1, wd = 10−5

FDR: lr = 0.03, α = 1
LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20,
lr = 0.03, lrfitting = 0.01, m = 0.5
BiC: τ = 2, epochsBiC = 250, lr = 0.03
ER-ACE: lr = 0.03
ER: lr = 0.1
DER++: lr = 0.03, α = 0.2, β = 0.5

B.4.2 Split CIFAR-100

FT: lr = 0.03
JT: lr = 0.03

Buffer size = 500
iCaRL: lr = 0.3, wd = 10−5

FDR: lr = 0.03, α = 0.3
LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20,
lr = 0.03, lrfitting = 0.01, m = 0.5
BiC: τ = 2, epochsBiC = 250, lr = 0.03
ER-ACE: lr = 0.03
ER: lr = 0.1
DER++: lr = 0.03, α = 0.2, β = 0.5

Buffer size = 2000
iCaRL: lr = 0.3, wd = 10−5

FDR: lr = 0.03, α = 1
LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20,
lr = 0.03, lrfitting = 0.01, m = 0.5
BiC: τ = 2, epochsBiC = 250, lr = 0.03
ER-ACE: lr = 0.03
ER: lr = 0.1
DER++: lr = 0.03, α = 0.1, β = 0.5

B.4.3 Split TinyImageNet

FT: lr = 0.03
JT: lr = 0.03

Buffer size = 4000
iCaRL: lr = 0.03, wd = 10−5

FDR: lr = 0.03, α = 0.3
LUCIR: λbase=5, mom=0.9, k=2, epochfitting=20, lr=0.03,
lrfitting=0.01, m=0.5
BiC: τ = 2, epochsBiC = 250, lr = 0.03
ER-ACE: lr = 0.03
ER: lr = 0.1
DER++: lr = 0.1, α = 0.3, β = 0.8

C. Additional results
C.1. Final Forgetting

Final Forgetting (FF) measures the performance drop be-
tween after learning on each task and the end of CL. A CL
method with a lower FF has a better ability to retain knowl-
edge during CL and thus better stability. However, higher
stability may come with the price of plasticity, and we re-
mind readers that the Final Average Accuracy (FAA) re-
ported in Table 1 can better reflect the trade-off between
stability and plasticity. The Final Forgetting for all base-
lines and our methods can be found in Table 4. As we
can see from Table 4, in the class-IL setting, the proposed
DER++ w/ BFP method helps reduce FF compared to the
base DER++ method by 11% and 12% on S-CIFAR10 with



200 buffer size and S-CIFAR100 with 500 buffer size re-
spectively. DER++ w/ BFP also achieves the lowest FF
over all compared methods in the class-IL setting. Final
Forgettings in the Task-IL setting are generally much lower
than those from the Class-IL setting because Task-IL pro-
vides the oracle task identifiers during the testing time and
thus becomes a much easier CL scenario. In this setting, the
proposed BFP also brings large improvements over the base
ER and DER++ methods.

Dataset Buffer FD BFP BFP-2

S-CIFAR10 200 55.10±1.85 63.27±1.09 60.61±2.72
500 66.37±1.37 71.51±1.58 70.25±1.18

S-CIFAR100 500 20.02±0.09 22.54±1.10 21.25±0.73
2000 36.81±0.71 38.92±1.94 39.42±2.54

S-TinyImg 4000 23.13±0.77 26.33±0.68 25.87±0.86

Table 3. Class-IL Final Average Accuracy using different types of
layer for backward feature projection. The base method is ER.

C.2. Ablation Study based on Experience Replay

We conduct the same ablation study as that in Sec-
tion 4.5, on different types of the projection layer used in ER
w/ BFP. The results are reported in Table 3. From Table 3,
we can draw the same conclusion as in Section 4.5. BFP
uses learnable linear transformation when distilling features
and thus results in better plasticity during CL compared to
the simple FD method. Results show that BFP outperforms
FD by a significant margin and has better performance than
BFP-2 in most cases. This further shows that enforcing a
linear relationship between the new and old features could
better preserve linear separability and result in less forget-
ting in CL.

C.3. Linear Probing

We conduct the same linear probing analysis as
Section 4.4 Figure 3 on Split-CIFAR100 and Split-
TinyImageNet, and the results are reported in Figure 5. On
these two datasets, while FD and BFP result in similar lin-
ear probing performance when based on DER++, BFP still
leads to better linear probing accuracies when based on FT,
especially when a large subset of training data is used for
linear probing. FT w/ BFP (without the memory buffer) has
a similar or even better performance than DER++ (with the
memory buffer). This shows that BFP help learns a better
feature space from CL, where features from different class
are more linearly separable.

C.4. Feature Similarity Analysis

We perform the same feature similarity analysis as
Section 4.6 and Figure 4 on Split-CIFAR100 and Split-
TinyImageNet, and the results are reported in Figure 6.
From Figure 6, although the curves have high variance
throughout continual learning, we can see that BFP has fea-
ture similarities that are higher than the DER++ baseline but

lower than the naive FD, and thus achieve a better trade-off
between stability and plasticity.

C.5. Experiments on Split-ImageNet100

To demonstrate that the proposed BFP method scales
to large datasets, we conduct experiments on Ima-
geNet100 [23, 41]. We split ImageNet100 into 10 tasks
with 10 classes per task and use a memory buffer of size
2000. The model is trained for 65 epochs on each task us-
ing an SGD optimizer with an initial learning rate of 0.1 and
weight decay of 5 × 10−4. Within each task, the learning
rate goes through a linear warm-up scheduler for the first 5
epochs and then decays with a 0.1 rate after 15, 30, 40, and
45 epochs. The results are reported in Table 5, which shows
that the proposed BFP method still gives a significant im-
provement (over 5% in Class-IL setting) over the DER++
baseline, confirming our existing results.

C.6. Effect of γ on Plasticity and Stability

In continual learning, the weight of regularization loss
controls how closely and strictly the model should resem-
ble the old checkpoints. Therefore the weight serves as a
control knob on the trade-off between stability and plastic-
ity: with a stronger regularization loss, the model forgets
old tasks less but instead has a hard time learning new tasks.

Although we did not perform an extensive hyperparam-
eter search on γ for individual combinations of datasets and
buffer sizes, we are still interested in how the varying γ af-
fects the trade-off between stability and plasticity in con-
tinual learning. Therefore, we train DER++ w/ BFP on S-
CIFAR10 with different γ and report the performance in
Table 6. Besides FAA and FF, we also report the Average
Learning Accuracy (ALA) [42], which measures the learn-
ing ability on new tasks in continual learning and thus re-
flects the plasticity. Using the notation from Sec. 4.1, ALA
is defined as

ALA =
1

T

T∑
i=1

aii. (18)

From Table 6, we can see that the effect of γ aligns with
our intuition. A higher γ poses a strong regularization on
the feature space, resulting in a lower FF (more stable) but
also a lower ALA (less plastic). Also, we can observe that
the final performance (FAA) remains robust to the value of
γ within a considerable range.

D. More Related Work
There has been some recent work that also employs PCA

computation in continual learning. Note that the proposed
BFP does not require PCA computation during training and
the feature directions are learned implicitly when optimiz-
ing matrix A. However, to provide a complete understand-



Setting Method S-CIFAR10 S-CIFAR100 S-TinyImageNet
Buffer Size 200 500 500 2000 4000

Class-IL Joint Training - - -
Finetune 96.44±0.28 89.54±0.16 78.54±0.45
iCaRL [41] 27.75±0.82 25.31±4.35 30.13±0.28 24.72±0.66 16.82±0.51
FDR [5] 76.08±4.87 83.16±4.72 73.71±0.68 60.90±1.41 57.01±0.59
LUCIR [23] 46.36±3.17 29.11±0.63 53.24±0.56 34.16±1.19 25.50±1.86
BiC [50] 44.36±2.73 20.88±2.17 51.86±1.57 41.42±1.61 61.67±1.42
ER-ACE [10] 21.59±1.19 15.07±0.99 38.32±1.29 28.69±0.87 30.83±0.23
ER [42] 42.19±5.19 26.64±6.33 47.62±33.70 44.03±18.79 49.61±16.47
ER w/ BFP (Ours) 32.23±5.58 (-9.96) 22.67±6.64 (-3.97) 47.69±30.30 (-0.07) 37.49±18.06 (-6.54) 41.59±20.77 (-8.02)
DER++ [8] 28.28±1.06 20.16±1.49 42.58±2.03 26.29±1.66 16.03±1.20
DER++ w/ BFP (Ours) 16.69±0.28 (-11.59) 13.25±0.64 (-6.91) 29.85±0.97 (-12.73) 20.91±0.86 (-5.39) 9.42±1.04 (-6.28)

Task-IL Joint Training - - -
Finetune 39.72±6.27 60.46±2.74 67.04±1.27
iCaRL [41] 4.29±1.00 1.91±2.12 3.67±0.40 1.82±0.32 3.56±0.46
FDR [5] 7.03±1.38 4.47±0.45 16.63±0.20 9.17±0.33 13.73±0.30
LUCIR [23] 2.83±0.99 2.04±0.27 2.61±0.17 1.08±0.13 4.95±0.61
BiC [50] 0.81±0.77 0.24±0.25 3.95±0.35 2.36±0.40 7.08±3.74
ER-ACE [10] 6.10±0.72 3.64±0.29 13.95±0.45 7.36±0.43 10.67±0.41
ER [42] 5.71±0.60 3.54±1.15 11.55±6.31 6.12±2.49 11.77±2.06
ER w/ BFP (Ours) 1.38±0.29 (-4.34) 0.77±0.38 (-2.77) 5.63±1.56 (-5.92) 2.95±0.75 (-3.16) 3.31±1.19 (-8.46)
DER++ [8] 3.88±0.51 1.65±0.17 11.68±0.55 4.80±0.45 6.73±0.41
DER++ w/ BFP (Ours) 1.04±0.23 (-2.84) 0.53±0.23 (-1.12) 6.36±0.43 (-5.32) 3.26±0.15 (-1.54) 4.17±0.37 (-2.49)

Table 4. Final Forgetting (FF, in %, lower is better) in Class-IL and Task-IL setting of baselines and our methods on various datasets and
buffer sizes. The green numbers in parentheses show the absolute improvements over the corresponding ER or DER++ baselines brought
by BFP.

Method DER++ w/ FD w/ BFP w/ BFP-2
Class-IL 49.20±1.99 51.89±3.42 54.45±0.86 52.88±1.86

Task-IL 69.01±2.01 71.23±2.80 72.05±1.04 70.56±1.47

Table 5. Final Average Accuracy on ImageNet-100. (mean±std
over 3 runs)

ing of the literature, we briefly review the related work that
also uses PCA for continual learning.

Doan et al. [17] proposed PCA-OGD, which combines
PCA analysis with Orthogonal Gradient Descent (OGD).
PCA-OGD projects the gradients onto the residuals sub-
space to reduce the interference of gradient updates from the
new tasks on the old tasks. Zhu et al. [56] decomposed the
learned features during CL using PCA. They showed that
feature directions with larger eigenvalues have larger sim-
ilarities (corresponding angles) before and after learning a
task. They proposed that these feature directions are more
transferable and less forgettable. They showed that their
dual augmentation method can encourage learned features
to have more directions with large eigenvalues. GeoDL [46]
constructs low-dimensional manifolds for the features ex-
tracted by the online model and the old checkpoints and per-
forms knowledge distillation on the manifolds. PCA com-
putation is explicitly conducted on the learned features for
the manifold construction. SPACE [44] used PCA analysis
for network compression and pruning in continual learning.
Similar to our analysis, they use PCA to split the learned fil-
ters in a network into Core, which is important for the cur-
rent task, and Residual, which can be compressed and freed

up to learn future tasks. In their work, PCA computation is
required during continual learning on every layer of the net-
work in order to do pruning, This poses a significant compu-
tational overhead in CL compared to our BFP. Instead of ap-
plying PCA analysis in continual learning, Zhang et al. [54]
designed a modified PCA algorithm based on EWC [30] so
that it has continual learning ability. They aim to reduce the
forgetting problem in monitoring multimode processes.

γ 0.1 0.3 1.0 3.0 10.0
FAA 74.56 75.77 76.68 76.00 73.54
FF 16.11 14.63 13.16 13.07 12.69
ALA 87.45 87.32 87.21 86.45 83.70

Table 6. Results on CIFAR10 (buffer size 500) with different γ.
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Figure 5. Linear probing accuracies on the fixed feature extrac-
tor obtained after training on Split-CIFAR100 (top) and TinyIma-
geNet (bottom). DER++ and its variants use a buffer size of 500
for CIFAR100 and 4000 for TinyImageNet.
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CIFAR100 with buffer size 500 (top) and Split-TinyImageNet with
buffer size 4000 (bottom), using different CL methods.
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