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Supplementary Material

A. Implementation Details

Training and Inference Details. In our experiments, all
models are trained on the nuScenes training set with a batch
size of 8 for 24 epochs. The ADAM optimizer [2] is adopted
to train the whole pipeline. The learning rate has an ini-
tial value of 2e−4 and decays to 10% at the 20th and the
23rd epochs. The hidden size of the query-based detection
and tracking module is set to 256, and that of the trajec-
tory predictor is set to 128. A pretrained detection back-
bone is used for model initialization. We evaluate all mod-
els on the nuScenes validation set. All models are tested
online by feeding raw multi-view images of each time step
to the model in chronological order. The metric computa-
tion is performed at every step except for steps that do not
have enough future frames. Different from popular trajec-
tory prediction benchmarks that only require predictions of
selected agents, we simultaneously predict all agents at each
step.

Query-based Detection and Tracking. The query-based
detection and tracking takes ResNet50 [8] as the image
backbone and DETR3D [11] as the detection head. The
detection head consists of 6 layers, and each layer contains
a feature refinement layer and a multi-head attention layer
with layer normalization. The hidden size for the detection
head is set to 256. Finally, one branch predicts center co-
ordinates and size of agents, and the other branch predicts
agent type. Each branch consists of two fully connected
layers, where the hidden size is also 256.

Map Encoding. Same as typical trajectory prediction
models, ViP3D also encodes HD maps to facilitate trajec-
tory prediction. VectorNet [3] is the first trajectory predic-
tion method to encode vectorized HD maps using a hier-
archical graph neural network, and we follow it to convert
each lane into a sequence of vectors. Each vector repre-
sents a segment of the lane, including the endpoints of the
segment, the attributes of the lane, and the numerical order
of the segment in the lane.

B. Trajectory Decoding
ViP3D can leverage a variety of trajectory decoding

methods, such as regression-based methods [1, 7, 9, 10],
goal-based methods [12] and heatmap-based methods [4–
6]. We conduct experiments on these three trajectory de-
coding methods. In this section, we introduce the imple-
mentation details of these methods.

Regression-based. The regression-based trajectory de-
coder is a 2-layer MLP that takes the agent queries as in-
put and directly outputs multiple future trajectories. During
inference, the regression-based trajectory decoder directly
outputs a set of predicted trajectories. During training, we
first calculate the distance between each predicted trajectory

ŝ and ground truth trajectory s: d(s, ŝ) =
Tfuture∑
t=1

||st − ŝt||,

where || · || is the ℓ2 distance between two points. Then,
we select the predicted trajectory with the closest distance:
k̂ = argmink∈1...K d(s, s(k)), where s(k) is the kth pre-
dicted trajectory. Finally, we calculate regression loss be-
tween the closest predicted trajectory s(k̂) and the ground
truth trajectory s as

Ltrajectory =

Tfuture∑
t=1

Lreg(st, s
(k̂)
t ), (1)

where Lreg is the smooth ℓ1 loss between two points.

Goal-based. The goal-based trajectory decoder consists
of a goal encoder, a probability decoder, an offset decoder,
and a trajectory completion module. These modules are im-
plemented using MLP. For each agent, we first randomly
generate a set of candidate goals. The goal encoder is used
to obtain the features of candidate goals by taking their co-
ordinates as input. After that, a concatenation of the agent
query and the features of goal coordinates is fed into the
probability decoder and offset decoder. The probability de-
coder and the offset decoder output predicted goal proba-
bilities and goal offsets, respectively. Let Lcls be the bi-
nary cross-entropy loss for the probability decoder, and let
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Lreg be the smooth ℓ1 loss for the offset decoder. To obtain
K trajectories, Non-maximum supervision (NMS) is em-
ployed to select K goals (after adding the goal offsets), and
the trajectory completion module takes the K selected goals
and outputs K trajectories. Let Lcompletion be the smooth ℓ1
loss for the trajectory completion module. Then the overall
loss is

Ltrajectory = Lcls + Lreg + Lcompletion. (2)

Heatmap-based. The heatmap-based trajectory decoder
only consists of a goal encoder, a probability decoder, and
a trajectory completion module. These modules are imple-
mented using MLP. For each agent, to obtain a heatmap in-
dicating the probability distribution of the final positions of
the trajectories, we first densely sample goals with a sam-
pling density of 1m. The goal encoder is used to obtain
the features of the goals by taking their coordinates as in-
put. After that, a concatenation of the agent query and the
features of goal coordinates is fed into the probability de-
coder. The probability decoder outputs predicted goal prob-
abilities, and we obtain the heatmap. Let Lcls be the bi-
nary cross-entropy loss for the probability decoder. To ob-
tain K trajectories, we also use NMS to select K goals for
simplification, instead of using greedy algorithms as in ori-
gin heatmap-based methods [5]. The trajectory completion
module takes the K selected goals and outputs K trajecto-
ries. Let Lcompletion be the smooth ℓ1 loss for the trajectory
completion module. Then the overall loss is

Ltrajectory = Lcls + Lcompletion. (3)

C. Qualitative Results
The visualizations of predicted results of both ViP3D and

the traditional pipeline are included in the paper. In this
section, we provide more visualizations for ViP3D, includ-
ing some failure cases. As the cases shown in Figure 1,
ViP3D can predict accurate future trajectories. As the fail-
ure cases shown in Figure 2, because ViP3D is a vision-
based pipeline, it is difficult for ViP3D to detect agents far
away from the ego vehicle or agents partially obscured. In
the upper part of Figure 2, a vehicle (surrounded by a red
box) that is far away from the ego vehicle and is partially
obscured by other vehicles, so it is difficult to be detected.
In the lower part of Figure 2, a pedestrian (surrounded by
a red box) is mostly obscured by a billboard, so ViP3D can
not detect this pedestrian.
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Figure 1. Qualitative results of ViP3D on the nuScenes validation set. Input camera images are shown on the top. The green vehicle is
the ego agent. The blue and orange agents indicate ground-truth and tracked agents, respectively. The blue and orange curves indicate
ground-truth trajectories and predicted trajectories of ViP3D, respectively. For each agent, only the predicted trajectory with the highest
probability is drawn.
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Figure 2. Failure cases of ViP3D on the nuScenes validation set. Input camera images are shown on the top. The green vehicle is the ego
agent. The blue and orange agents indicate ground-truth and tracked agents, respectively. The blue and orange curves indicate ground-truth
trajectories and predicted trajectories of ViP3D, respectively. For each agent, only the predicted trajectory with the highest probability is
drawn. The agent surrounded by a red box indicates that it is not detected by ViP3D.
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