
MACARONS: Mapping And Coverage Anticipation
with RGB Online Self-Supervision

—————
Supplementary Material

Antoine Guédon Tom Monnier Pascal Monasse Vincent Lepetit
LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France

https://imagine.enpc.fr/˜guedona/MACARONS/

In this supplementary material, we provide the following
elements:

1. Further details about the architecture of our model
MACARONS and its different modules.

2. Further details about the training process, as well as
the implementation of MACARONS.

3. Further quantitative and qualitative results.

We also provide on this webpage a video that illustrates how
MACARONS explores and reconstructs large 3D struc-
tures.

1. Architecture
In the following subsections, we provide details about

the architecture of MACARONS and its different modules.

1.1. Depth prediction module

The figure 1 illustrates the architecture of the depth pre-
diction module of MACARONS, which takes inspiration
from Watson et al. [9].

In our experiments, we follow [9] and use a set of
ndepth = 96 ordered planes perpendicular to the optical
axis at It. The depths are linearly spaced between extremal
values dmin and dmax. We adapt dmin and dmax depending
on the size of the bounding boxes of the scenes seen during
training. We use images with size 456 × 256 pixels, which
corresponds to a widescreen aspect ratio of 16:9.

This architecture is essential for MACARONS to learn
how to compute a volume occupancy field and predict NBV
in a self-supervised fashion. Indeed, we use a dense depth
map prediction module rather than SfM or keypoints match-
ing approaches because we need dense depth maps for space
carving operations to generate a pseudo-GT volume occu-
pancy and train the corresponding module. Moreover, the
depth prediction module is also a fast and precise model

that allows for reconstructing in real-time the surface points
seen by the camera.

1.2. Volume occupancy module

The figure 2 presents the architecture of the volume oc-
cupancy module. We implement this module using a Trans-
former [8]: The module takes as input the point p, the sur-
face point cloud St and previous poses ci, and outputs a
scalar value in [0, 1].

This volumetric representation is a deep implicit func-
tion inspired by [4], and is convenient to build a NBV pre-
diction model that scales to large environments. Indeed, as
we explained in the main paper, it has a virtually infinite res-
olution and can handle arbitrarily large point clouds without
failing to encode fine details since it uses mostly local fea-
tures at different scales to compute the probability of a 3D
point to be occupied.

In particular, for any 3D point p ∈ R3, we compute the
k-nearest neighbors (q1, ..., qk) of p in the dense point cloud
St and transform the sequence (q1−p, ..., qk−p) using self-
attention units followed by pooling operations. The result-
ing feature encodes information about the local state of the
geometry. Then, we iterate the process at different scales:
we down-sample the point cloud, compute the k-nearest-
neighbors, encode the sequence, and reiterate. The spatial
extension of the neighbors grows as we down-sample St,
which helps to encode information about geometry at larger
scales.

Because this architecture relies on local, neighborhood
features, it can process arbitrarily large point clouds without
failing to encode fine details or producing memory issues:
Indeed, for a 3D point p, adding distant surface points to
St does not change the local state of the geometry, nor the
neighbors of p.

In practice, we use k = 16 and compute features at 3
different scales.

1

https://imagine.enpc.fr/~guedona/MACARONS/
https://imagine.enpc.fr/~guedona/MACARONS/


Figure 1. Architecture of the depth prediction module. The depth prediction module relies on a cost volume to predict depth from
multiple RGB inputs: Features extracted from previous images It−1, ..., It−m are warped into the view space of image It for multiple
depth planes, and compared to the features extracted from It using L1-distance.

Figure 2. Architecture of the volume occupancy module. At
time step t, the volume occupancy module relies mostly on neigh-
borhood features to compute its output σt(p). To compute the
neighborhood features of an input 3D point p, we apply self-
attention units on the k-nearest neighbors of p at different scales.

1.3. Surface coverage gain module

The figure 3 presents the architecture of the surface cov-
erage gain module. This final module computes the surface
coverage gain of a given camera pose c based on the pre-
dicted occupancy field, as proposed by [4]. However, as we
explain in the main paper, we brought key modifications to
the surface coverage gain estimation formula to adapt the
model to NBV computation in large environments. In the
following paragraphs, we detail some technical improve-
ments that we did not mention in the main paper.

Occlusion-aware camera history features. In particular,
we introduce a critical change to camera history features
ht. In [4], the authors compute camera history features by
projecting all previous camera positions cposi on a sphere
around p. On the contrary, we compute ht(p) by projecting
on a sphere around p only the positions cposi of the cameras

for which p was in the field of view delimited by croti , and
for which p was not too far behind the surface reconstructed
in the depth map di.

Therefore, we encode only the previous camera poses
for which p, whether it is empty or occupied, is likely to be
visible. This results in camera history features that reflect
previous occlusion effects. This technical detail is actually
of great importance to improve performance in large envi-
ronments, since there is great variability in camera fields of
view.

Indeed, to compute the visibility gain of a 3D point p, the
surface coverage gain module exploits information about
the volume occupancy, the camera history and the occlu-
sions. For the specific case of a centered object with cam-
eras sampled on a sphere around it, the volume χ is entirely
contained in the field of view of all cameras. Therefore,
by encoding occlusion effects with its transformer architec-
ture, the module is able to identify, for any camera ci in the
camera history, if the point p was visible from ci. Conse-
quently, projecting the positions of all previous cameras ci
on a sphere around p does not decrease performance since
the model is able to identify which camera p was visible
from by encoding all occlusion effects in χ.

However, in a large environment, a subset of points in χ
that occludes p in the direction of a previous camera c′ could
be located outside the field of view of another new camera
c. Thus, the visibility module could lack information about
previous occlusion effects when processing the field of view
of the new camera c while still be provided with the infor-
mation that p was observed in the direction of c′ because of
the camera history feature. This could trick the model into
thinking p is empty even if it is not. Consequently, modify-
ing the camera history feature to reflect previous occlusion
effects leads to better performance in large environments.



Figure 3. Architecture of the surface coverage gain module, inspired by [4]. which predicts a visibility gain for a sequence of 3D points
pi in the field of view of camera c. To make this prediction, the model encodes the points pi concatenated with their occupancy probability
σt(pi). We use an attention mechanism to take into account occlusion effects in the volume between the 3D points and their consequences
on the visibility gains. We finally use a Monte Carlo integration to compute the coverage gain Gt(c) of camera c.

Additional details. At time step t, all surface coverage
gain predictions are made in the view space of the current
camera pose ct. This increases performance since it slightly
simplifies the problem (on the contrary, estimating surface
coverage gains from any random coordinate space, for ex-
ample, would make the problem more complex).

Finally, Even if its coverage gain is known to be equal
to zero, we do compute a prediction for the surface cover-
age gain of the current camera ct and use it to compute the
loss during the online, self-supervised training. This infor-
mation is actually useful to help the module set the lowest
visibility gain value at zero.

2. Implementation details

2.1. Camera management

We follow [4] and first discretize the set of all camera
poses C in the scene on a 5D grid, that correspond to co-
ordinates cpos = (xc, yc, zc) of the camera as well as the
elevation and azimuth to encode rotation crot. The number
of poses depends on the dimensions of the bounding box of
the scene: As we explain in the main paper, this box is an
input to the algorithm, as a way for the user to tell which
part of the scene should be reconstructed. We follow [4]
in our experiments, and discretize the 5D grid to obtain ap-
proximately 10,000 different poses in each scene.

At each time step t, we define the set of possible camera
poses, denoted by Ct ⊂ C, as the immediate neighbors of
the current camera pose ct within the 5D grid. Specifically,
these poses lie within a 6-neighborhood on the 3D position
grid and a 4-neighborhood on the 2D rotation grid. We ex-
clude any neighboring pose that shares the same position
cpost as ct, as the depth module requires camera movement
to generate depth maps using warping operations.

2.2. Initializing the neural modules

We have observed that during the initial training phase of
MACARONS, the volume occupancy module and surface
coverage gain module sometimes exhibit instability when
trained from scratch with a naive initialization. This insta-
bility arises from the great variability and noise in the in-
put data, which make training challenging for self-attention
units and transformer architectures. Indeed, in contrast to
SCONE [4], which has similar modules trained under ideal
conditions with perfectly known 3D objects and 3D super-
vision, MACARONS reconstructs 3D from partial observa-
tions of unknown scenes, which results in a wide variation
in batch size as well as noise in the 3D reconstructions.

However, we have found that this instability occurs
only during the first few minutes of training, while both
SCONE [4] and MACARONS require several dozen hours
to converge. To stabilize the modules of MACARONS, we
have developed a simple initialization process that involves
a few iterations under ideal conditions: We first initialize the
modules using standard techniques, such as Kaiming [5] for
all layers except the self-attention units, for which we use
Xavier initialization [2]. We then perform a few iterations
with perfectly known objects, similar to [4], which takes
less than 5 minutes (1 minute is sufficient).

We can use either a few ShapeNet [1] meshes, or simple
virtual cube meshes generated online for this initialization
process, eliminating the need for an additional 3D dataset.

2.3. Training the neural modules

To train our model in an online, self-supervised fashion
for our experiments, we start by loading a 3D scene from a
subset of the dataset introduced in [4]. We sample a random
camera pose in the scene, and let our model explore. The
camera captures images with size 456 × 256 pixels, which
corresponds to a widescreen aspect ratio of 16:9. The model



performs NBV training iterations as described in the main
paper: In particular, it builds a Memory in real-time and si-
multaneously learns to reconstruct surfaces and optimize its
path in the volume to increase its coverage of the surface.
When starting a trajectory, we select a certain number N
of 3D points within the bounding box of the scene, which
we refer to as proxy points. During the online training pro-
cess, we solely use these points to represent the volume: We
calculate the volume occupancy exclusively for these proxy
points and sample from them to predict the surface cover-
age gains. We save both the proxy points and their pseudo
ground-truth volume occupancy values in memory. In our
implementation, we typically sample 100,000 proxy points
and evaluate surface coverage gains for 4 camera poses at
each iteration.

After 100 NBV iterations, we load another scene and
start a new trajectory. We perform data augmentation during
training: we apply color jitter on RGB images, and perform
rotations and mirroring operations on 3D inputs. Multi-
GPU programming can be used to let the model explore sev-
eral scenes at the same time and speed up convergence; In
practice, we use 4 GPUs Nvidia Tesla V100 SXM2 32 Go
to let the model explore 4 different scenes in parallel.

We perform up to 360 trajectories to make the model
converge. However, such numbers are prone to variations:
they depend not only on the complexity of the scenes but
also on the size of the Memory and the number of Mem-
ory Replay iterations. Increasing the number of Memory
Replay iterations slows down the exploration process dur-
ing online training but considerably accelerates the conver-
gence.

2.4. Memory Replay

The use of Memory Replay iterations allows for training
the model with more complex camera configurations, for
example by evaluating the surface coverage gains of distant
camera poses stored into the memory. On the other hand,
decreasing the number of memory replay iterations results
in the model relying mostly on the current images for train-
ing, thus comparing surface coverage gains between nearby
camera poses.

In our experiments, for each GPU, we store the data from
the last 10 trajectories into the memory. We use 5 mem-
ory replay iterations for the depth module and only 1 for
both volume occupancy and surface coverage gain modules,
by using the 4 latest images captured from nearby camera
poses. The self-supervision signal is built by comparing the
current state of the scene to the state of the same scene be-
fore capturing these images. The use of a single memory
replay iteration for the volume occupancy and surface cov-
erage gain modules results in the best performance since we
select the next best view from nearby camera poses in our
naive path planning strategy.

However, more complex strategies for selecting the Next
Best View (NBV), which include distant camera poses,
could be devised. In such cases, increasing the number of
memory replay iterations to create a self-supervision signal
that aligns with the expected camera configuration should
improve the performance.

2.5. Computational cost

Generally, computing a whole trajectory only takes a few
minutes at inference, even on a single GPU Nvidia GeForce
GTX 1080 Ti. During online, self-supervised training, com-
puting a whole trajectory can take up to 10 minutes using
GPU Nvidia Tesla V100 in our main experimental setup
(which consists in 5 memory replay iterations for depth
module and only 1 for volume occupancy and surface cov-
erage gain modules), and up to 25 minutes for a different
setup (5 memory replay iterations for depth module and 3
for the other modules).

However, we train MACARONS in synthetic scenes,
which requires the GPU to perform numerous rendering op-
erations to produce RGB inputs. As a result, the model’s
processing speed should be much faster in real-world sce-
narios. Specifically, with online learning activated, MAC-
ARONS can process 1.33 frames per second. After suffi-
cient training, online learning can be disabled even in new,
unfamiliar scenes, increasing the processing rate to 2.35
frames per second. These processing rates make MAC-
ARONS well-suited for real-time exploration, as it is not
necessary to process every frame captured by the camera,
but only a small subset of them.

3. Memory Building

3.1. Partial surface point cloud

As we explained in the main paper, to compute the recon-
structed surface point cloud St at time step t we backproject
the depth map dt in 3D, filter the point cloud and concate-
nate it to the previous points obtained from d0, .., dt−1. We
filter points associated to strong gradients in the depth map,
which we observed are likely to yield wrong 3D points:
We remove points based on their value for the edge-aware
smoothness loss appearing in [3, 6, 9] that we also use for
training. We hypothesize such outliers are linked to the
module incapacity to output sudden changes in depth, thus
resulting in over-smooth depth maps.

To avoid processing an excessively large point cloud, we
choose to backproject only a randomly selected subset of
the 456 × 256 pixels contained in the depth map. In the
experiments we conducted, we sampled 5% of the pixels,
resulting in the backprojection of 5836 pixels for each new
depth map produced by the model.



3.2. Pseudo-GT volume occupancy

We rely on Space Carving [7] using the predicted depth
maps to create a supervision signal to train the prediction
of the volume occupancy field. As explained in the main
paper, our key idea is as follows: When the whole surface
of the scene is covered with depth maps, a 3D point p ∈ R3

is occupied iff for any depth map d containing p in its field
of view, p is located behind the surface visible in d.

In practice, at time step t, we only have access to the
depth maps d′t,1, ..., d

′
t,n predicted for the images captured

so far. We can still compute an intermediate occupancy
field, which is an approximation but can be used as su-
pervision signal. Since it is not reliable far away from the
depth maps when the whole surface has not been covered,
we only sample points around the newly reconstructed sur-
face within a margin that increases with the total number of
depth maps. In our experiments, this margin increases dur-
ing the trajectory from 0 to approximately half the length
of the bounding box, depending on the scene. We use the
arctan function to compute the margin, rather than using a
linear growth.

Finally, the depth maps generated by our model are not
perfect, and some of them could contain errors. There-
fore, eliminating all proxy points that are not located behind
depth maps can be too aggressive and may produce inaccu-
rate volume occupancy fields. To alleviate this harsh space
carving approach, we introduce two simple ideas: a score-
based carving operation and a carving tolerance.

Score-based carving. We assume that only a small por-
tion of the depth maps produced by our model are inaccu-
rate. Thus, we suggest to keep proxy points iff they are
located behind a sufficient number of depth maps. Specifi-
cally, for a proxy point p, we denote by nd(p) the number
of depth maps for which p is the field of view of the depth
map, and we denote by nb(p) the number of depth maps for
which p is not only in the field of view of the depth map,
but also located behind the surface shown in the depth map.
We finally define the score of p as s(p) = nb(p)

nd(p)
. To per-

form space carving, we preserve proxy points with a score
exceeding a certain threshold. We set this threshold to 0.95
in our experiments.

Carving tolerance. To further alleviate space carving, we
allow 3D points to be located in front of a depth map but
only up to a certain distance that depends on the size of the
bounding box of scene. We refer to this range as the carving
tolerance, and we set it to roughly 5% of the spatial extent
of the bounding box in our experiments.

3.3. Pseudo-GT surface coverage gain

When computing pseudo-GT surface coverage gains, we
count the number of new visible surface points in newly ac-
quired depth maps. However, surface points have to be uni-
formly sampled on the whole surface to allow for accurate
supervision coverage gain computation. Indeed, if surface
points in St are not uniformly sampled on the surface, then
the pseudo-GT coverage gain will be higher than expected
in areas where the surface points are the most concentrated.

To address this issue, we apply a filtering process to the
surface point cloud St during online training: we regularly
recompute a filtered version S′

t of St by redistributing the
surface points in small cells across the volume, which con-
tain approximately the same number of surface points. In
our experiments, we typically use 50 to 150 cells depend-
ing on the spatial extent of the scene, and set the maximum
capacity of a cell to 1,000 points. This simple approach
asymptotically promotes the uniform distribution of points
on the surface. We recompute S′

t every 20 training iterations
and fill the cells incrementally by adding 1,000 points at a
time. Indeed, we encountered some issues when filling cells
with a large number of points at the same time; Therefore,
filling incrementally the cells gives better performance.

4. Experiments

In this section, we first provide extensive details concern-
ing the experiment presented in subsection 5.2. of the main
paper. Then, we present additional analysis about the bene-
fits brought by our approach.

4.1. Exploration of large 3D scenes

We first provide further analysis concerning the main ex-
periment presented in the paper, which compares our ap-
proach MACARONS to different NBV baselines for auto-
mated exploration and reconstruction of large 3D scenes.

In particular, to complement the quantitative results pre-
sented in Table 1 of the main paper, we provide in Figure 6
details about the convergence speed of the surface cover-
age in large 3D scenes for MACARONS and the baselines
from [4].

Next, we give additional qualitative results computed
with MACARONS. Figure 4 pictures trajectories computed
in real-time by MACARONS after 100 NBV iterations.

Figures 7 give examples of surface point clouds recon-
structed with our model from RGB images during explo-
ration.

Figure 8 shows examples of volume occupancy fields
that MACARONS predicted from the reconstructed surface
point clouds.

Finally, we provide on this website a video that illustrates
how MACARONS explores and reconstructs efficiently a

https://imagine.enpc.fr/~guedona/MACARONS/


(a) Pisa Cathedral (b) Statue of Liberty (c) Pantheon (d) Fushimi Castle

(e) Colosseum (f) Dunnottar Castle (g) Christ the Redeemer (h) Bannerman Castle

(i) Alhambra Palace (j) Neuschwanstein Castle (k) Eiffel Tower (l) Manhattan Bridge

Figure 4. Trajectories computed in real-time by MACARONS in large 3D structures. At each time step t, MACARONS predicts a
NBV and builds trajectories that consistently cover most of the surface of the scene. MACARONS performed 100 NBV iterations in these
images.

subset of three large 3D scenes. In particular, the video
shows several key-elements of our approach:

1. The trajectory of the camera, evolving in real-time
with each NBV iteration performed by the surface cov-
erage gain module (left).

2. The RGB input captured by the camera (top right).

3. The surface point cloud reconstructed using the depth
prediction module of MACARONS (right).

4. The volume occupancy field computed and updated in
real-time using the volume occupancy module (bottom
right). In the video, we removed the points with an
occupancy lower or equal to 0.5 for clarity.

4.2. Ablation study: Loss function

We illustrate how the novel loss we designed for sur-
face coverage gain estimation is grounded in the theoretical
framework introduced in [4].

Improving surface coverage gain estimation. As we
discussed in the main paper, the formalism introduced in [4]
aims to estimate the surface coverage gain by integrating
over the volume occupancy. However, this estimation can
only be performed to a scale factor that cannot be computed
in closed form.

Consequently, the predicted surface coverage gains are
supposed to be proportional to the real values. We build

Figure 5. Comparison between true surface coverage gains
and predicted surface coverage gains on ShapeNet models, us-
ing our novel loss. As expected, the normalized true and pre-
dicted coverages have great similarity, which verifies the hypothe-
sis about the proportionality of true surface coverage gains and the
predicted volumetric integrals.

our novel loss on this single hypothesis: If the values are
proportional, then dividing both predicted and pseudo-GT
coverage gains by their respective means should result in
similar values, that we directly compare with a L1-norm
during training. As shown in Figure 5, we verify this theo-
retical proportionality on different samples of the ShapeNet
dataset [1]. To this end, we use a version of MACARONS,



(a) Pisa Cathedral (b) Statue of Liberty (c) Pantheon (d) Fushimi Castle

(e) Colosseum (f) Dunnottar Castle (g) Christ the Redeemer (h) Bannerman Castle

(i) Alhambra Palace (j) Neuschwanstein Castle (k) Eiffel Tower (l) Manhattan Bridge

(m) Average on all scenes

Figure 6. Convergence speed of the surface coverage in large 3D scenes by MACARONS and several baselines from [4]. All methods
use perfect depth maps as input except for MACARONS, which takes RGB images as input. We follow [4] and plot the evolution of the
total surface coverage during exploration, after 100 NBV iterations. We average surface coverage on several trajectories for each scene,
starting from random camera poses. Standard deviations are shown on the figures. Our model MACARONS has been trained on a set of
previous scenes; all weights are frozen and we only perform inference computation. Other methods are trained on ShapeNet [1] with 3D
supervision. The first two rows depict scenes that were already seen by MACARONS during its online, self-supervised training. The third
row depicts scenes the model has never seen before. Even if it only uses RGB images, our model MACARONS is able to outperform the
baselines in large environments since, contrary to other methods, its self-supervised online training strategy allows it to scale its learning
process to any kind of environment.

called MACARONS-NBV, trained on ShapeNet only with
perfect depth maps. We sample random meshes in the
dataset as well as random initial camera poses; Then, we
apply the volume occupancy and the surface coverage gain
modules to predict the surface coverage gains of cameras
sampled on a sphere around the object. We divide predicted
coverage gains and ground truth coverage gains by their re-
spective means and compare the two distributions. As ex-
pected, the two are highly similar for many objects in the

dataset.

Additional details. In the main paper, we compare in Ta-
ble 1 our self-supervised method MACARONS trained with
our novel loss to the original pipeline SCONE [4] trained on
ShapeNet with the loss from [4]. We did not evaluate our
new online, self-supervised pipeline with the loss from [4]
because this loss needs a dense set of cameras, which is not
available during online exploration. Indeed, this loss gives



(a) Pisa Cathedral (b) Pisa Cathedral (c) Statue of Liberty (d) Statue of Liberty

(e) Pantheon (f) Pantheon (g) Fushimi Castle (h) Fushimi Castle

(i) Colosseum (j) Colosseum (k) Dunnottar Castle (l) Dunnottar Castle

(m) Christ the Redeemer (n) Christ the Redeemer (o) Bannerman Castle (p) Bannerman Castle

(q) Alhambra Palace (r) Alhambra Palace (s) Neuschwanstein Castle (t) Neuschwanstein Castle

(u) Eiffel Tower (v) Eiffel Tower (w) Manhattan Bridge (x) Manhattan Bridge

Figure 7. Automated reconstruction of large 3D structures from RGB images with our approach MACARONS. Our model recon-
structs the surface in real time during exploration: We show here the reconstruction after 100 NBV iterations. The model has been trained
on a set of previous scenes; all weights are frozen and we only perform inference computation. The first four rows depict scenes that were
already seen by the model during its online, self-supervised training. The two last row depicts scenes the model has never seen before. For
each scene, we provide images with colors computed from the input RGB images as well as images for which all points share the same
color. The latter help to better estimate the quality of the reconstructed geometry. MACARONS is not only able to reconstruct surfaces
thanks to its depth prediction module (even for scenes it has never seen before), but is also able to optimize its path around the structure
and consistently cover most of the surface of the scene thanks to its NBV prediction.

chaotic results when trained with a sparse set of cameras
in our pipeline. However, we proposed in Table 3 of the
main paper an ablation in large environments, that uses the
same MACARONS-NBV, trained on ShapeNet only with

both our loss and the loss from [4]. MACARONS-NBV
performs slightly worse than SCONE [4] when trained on
ShapeNet with the loss from [4], because authors from [4]
use additional, hand-crafted operations to help their model



(a) Pisa Cathedral (b) Pisa Cathedral (c) Statue of Liberty (d) Statue of Liberty

(e) Pantheon (f) Pantheon (g) Fushimi Castle (h) Fushimi Castle

(i) Colosseum (j) Colosseum (k) Neuschwanstein Castle (l) Neuschwanstein Castle

Figure 8. Volume occupancy fields computed with our approach MACARONS. Our model updates the volume occupancy field in
real time during exploration: For several scene, we show here the volume occupancy after 100 NBV iterations (left), as well as the final
reconstructed surface for comparison (right).

process large and unknown scenes. On the contrary, we
do not use such post-processing tricks but let our model
learn to process large scenes by itself with our online self-
supervised training, which explains the superiority of the
full model MACARONS.

4.3. Ablation study: Pretraining, Memory Replay

We conducted an additional ablation study in Table 1 to
assess the influence of memory replay iterations and pre-
training with explicit 3D supervision on [1]. We trained
MACARONS using different setups: we initialize the
model using our previously described initialization process
(Initialized), or with a complete pretraining on ShapeNet
with explicit 3D supervision, following [4] (Pretrained).
Additionally, we perform either one memory replay iter-
ation (1 MRI) or three memory replay iterations (3 MRI)
for both the volume occupancy and surface coverage gain
modules. For the depth module, we computed five memory
replay iterations in each setup.

As previously mentioned, the model does not gain from
additional memory replay iterations when trained from
scratch because it prioritizes learning to predict surface cov-
erage gains for nearby camera poses due to our unsophisti-
cated path planning strategy. However, if the model has al-
ready acquired knowledge about NBV prediction through a
full pretraining program involving explicit 3D supervision
on ShapeNet, it appears to benefit from more memory re-
play iterations as they allow for further specializing in NBV
prediction in large, unknown and complex scenes.

Finally, as stated in the main paper, a basic pretraining
approach on ShapeNet with explicit 3D supervision, with-
out incorporating a self-supervision strategy in unfamiliar
environments, fails in achieving performance comparable
to the full model MACARONS. Indeed, even with addi-
tional hand-crafted tricks to adapt NBV-prediction to larger
scenes, SCONE’s performance is still inferior to MAC-
ARONS when trained from scratch with self-supervision
only.



MACARONS

Initialized Initialized Pretrained Pretrained
3D scene SCONE [4] 1 MRI 3 MRI 1 MRI 3 MRI

Dunnottar Castle 0.650 ± 0.093 0.774 ± 0.049 0.793 ± 0.055 0.784 ± 0.025 0.805 ± 0.026
Colosseum 0.532 ± 0.032 0.622 ± 0.005 0.618 ± 0.011 0.629 ± 0.011 0.627 ± 0.011
Bannerman Castle 0.552 ± 0.020 0.764 ± 0.026 0.778 ± 0.018 0.716 ± 0.029 0.752 ± 0.016
Pantheon 0.401 ± 0.030 0.488 ± 0.012 0.487 ± 0.010 0.499 ± 0.020 0.509 ± 0.021
Christ the Redeemer 0.833 ± 0.037 0.848 ± 0.024 0.831 ± 0.040 0.865 ± 0.037 0.868 ± 0.028
Statue of Liberty 0.695 ± 0.020 0.696 ± 0.010 0.670 ± 0.021 0.708 ± 0.014 0.700 ± 0.013
Pisa Cathedral 0.555 ± 0.033 0.633 ± 0.023 0.629 ± 0.005 0.661 ± 0.008 0.645 ± 0.012
Fushimi Castle 0.806 ± 0.029 0.807 ± 0.014 0.827 ± 0.016 0.842 ± 0.019 0.860 ± 0.011

Alhambra Palace 0.528 ± 0.030 0.632 ± 0.017 0.636 ± 0.012 0.634 ± 0.019 0.647 ± 0.011
Neuschwanstein Castle 0.662 ± 0.041 0.738 ± 0.043 0.731 ± 0.013 0.760 ± 0.020 0.773 ± 0.014
Eiffel Tower 0.753 ± 0.013 0.766 ± 0.033 0.754 ± 0.025 0.789 ± 0.010 0.784 ± 0.027
Manhattan Bridge 0.745 ± 0.069 0.820 ± 0.021 0.830 ± 0.023 0.825 ± 0.034 0.847 ± 0.011

Average on all scenes 0.643 0.716 0.715 0.726 0.735

Table 1. AUCs of surface coverage on large 3D scenes for SCONE [4] and different training configurations of MACARONS.
SCONE [4] uses perfect depth maps as input, and MACARONS takes RGB images as input. We follow [4] and compute the area under the
curve representing the evolution of the total surface coverage during exploration. The 8 scenes above the bar were seen by MACARONS
during self-supervised training (but with different, random starting camera poses and trajectories), and the 4 scenes below the bar were
not. SCONE [4] is trained on ShapeNet [1] with 3D supervision. We trained MACARONS using different setups: we initialize the model
using our previously described initialization process (Initialized), or with a complete pretraining on ShapeNet with explicit 3D supervision,
following [4] (Pretrained). Additionally, we perform either one memory replay iteration (1 MRI) or three memory replay iterations (3 MRI)
for both the volume occupancy and surface coverage gain modules. For the depth module, we computed five memory replay iterations in
each setup.

References
[1] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. Shapenet: An Information-Rich 3D Model
Repository. Technical report, Stanford University — Prince-
ton University — Toyota Technological Institute at Chicago,
2015. 3, 6, 7, 9, 10

[2] Xavier Glorot and Yoshua Bengio. Understanding the Dif-
ficulty of Training Deep Feedforward Neural Networks. In
International Conference on Artificial Intelligence and Statis-
tics, 2010. 3

[3] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow.
Unsupervised Monocular Depth Estimation with Left-Right
Consistency. In Conference on Computer Vision and Pattern
Recognition, 2017. 4

[4] Antoine Guédon, Pascal Monasse, and Vincent Lepetit.
SCONE: Surface Coverage Optimization in Unknown Envi-
ronments by Volumetric Integration. In Advances in Neural
Information Processing Systems, 2022. 1, 2, 3, 5, 6, 7, 8, 9,
10

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving Deep into Rectifiers: Surpassing Human-Level Per-
formance on ImageNet Classification. In International Con-
ference on Computer Vision, 2015. 3

[6] Philipp Heise, Sebastian Klose, Brian Jensen, and Alois
Knoll. PM-Huber: Patchmatch with Huber Regularization for
Stereo Matching. In International Conference on Computer
Vision, 2013. 4

[7] Kiriakos N. Kutulakos and Steven M. Seitz. A Theory of
Shape by Space Carving. International Journal of Computer
Vision, 2000. 5

[8] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention Is All You Need. In Advances in
Neural Information Processing Systems, 2017. 1

[9] Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J.
Brostow, and Michael Firman. The Temporal Opportunist:
Self-Supervised Multi-Frame Monocular Depth. In Confer-
ence on Computer Vision and Pattern Recognition, 2021. 1,
4


	. Architecture
	. Depth prediction module
	. Volume occupancy module
	. Surface coverage gain module

	. Implementation details
	. Camera management
	. Initializing the neural modules
	. Training the neural modules
	. Memory Replay
	. Computational cost

	. Memory Building
	. Partial surface point cloud
	. Pseudo-GT volume occupancy
	. Pseudo-GT surface coverage gain

	. Experiments
	. Exploration of large 3D scenes
	. Ablation study: Loss function
	. Ablation study: Pretraining, Memory Replay


