
PCT-Net: Full Resolution Image Harmonization Using Pixel-Wise Color
Transformations

Supplementary Material

Julian Jorge Andrade Guerreiro1,∗ Mitsuru Nakazawa2 Björn Stenger2

1The University of Tokyo 2Rakuten Institute of Technology, Rakuten Group, Inc.
julianguerreio@outlook.de, {mitsuru.nakazawa, bjorn.stenger}@rakuten.com

This document contains additional explanations and
evaluations of the proposed image harmonization method.
We provide additional information regarding evaluation
metrics, explaining why we use the foreground mean
squared error (fMSE) in section A. In section B, we show
results on low-resolution (256× 256 pixels) images, which
has been the standard until recently, allowing us to com-
pare our proposed approach with a larger number of meth-
ods. In section C, we investigate the parameter maps for
the ViT backbone explaining the negative effect of employ-
ing a smoothing regularization. In section D, we explore
different pixel-wise color transformations (PCTs) and com-
pare them to the affine transform proposed in the paper. For
completeness, we provide the images from the user study in
section E, and additional qualitative results in section F.

A. Evaluation Metrics
Deciding on suitable metrics to evaluate and compare

different image harmonization methods is critical. The
Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio
(PSNR) are two commonly used metrics to asses the recon-
struction error. Given a ground truth image I ∈ RH×W×3

and a predicted image Î ∈ RH×W×3 of the width W and
height H , we first define the Squared Error (SE) of an image
as:

δ(Î, I) :=
∑
i,j

(Îi,j − Ii,j)
2. (1)

Based on the SE, we can easily define the MSE as the aver-
age over all pixels:

MSE(Î, I) =
δ(Î, I)

HW
, (2)

The PSNR is defined in terms of the MSE as:

PSNR(Î, I) = 10 log
I2max

MSE(Î, I)
, (3)

where Imax represents the largest possible pixel value, set
to Imax = 255.

A.1. Considering the Foreground Mask

In the image harmonization task, we are only interested
in a particular target region of the image indicated by a bi-
nary mask M ∈ {0, 1}H×W . However, since the mask
regions vary in size across the dataset, images with larger
target regions contribute more to the MSE than images with
smaller regions. Therefore, instead of averaging across the
entire image, the foreground Mean Squared Error (fMSE)
considers only the area of the mask, denoted as A(M). It
is given as

fMSE(Î, I) =
δ(M ⊙ Î,M ⊙ I)

A(M)
, (4)

where ⊙ represents the Hadamard product. If the predicted
images are not modified outside the mask region, which
we assume, then δ(M ⊙ Î,M ⊙ I) = δ(Î, I), and thus
fMSE(Î, I) = HW

A(M)MSE(Î, I).
Based on the same reasoning as the fMSE, [6] defines

the fPSNR as:

fPSNR(Î, I) = 10 log
I2max

fMSE(Î, I)
. (5)

However, we argue that a fPSNR is not required for perfor-
mance comparison across different datasets, as it only dif-
fers from the PSNR value by an added constant independent
of the predicted image. Using fMSE(Î, I) = αMSE(Î, I)
with α = HW

A(M) , fPSNR is expressed as:

10 log
I2max

αMSE(Î, I)
= PSNR(Î, I)− 10 logα. (6)

As a result, averaging the fPSNR across the dataset, yields
the same value as averaging the PSNR and subtracting the
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Table 1. Image-wise vs. Pixel-wise averaged MSE and fMSE.
As the dimension as well as the number of target pixels can differ
for different images, we compute average errors over images and
over individual pixels. While the values change, the ranking of the
methods remains unchanged. The best results are marked in bold,
the second best are underlined.

Method MSEImages ↓ MSEPixels ↓ fMSEImages ↓ fMSEPixels ↓

Input 177.99 299.96 1462.45 2243.14
Harmonizer [8] 27.62 24.78 339.23 183.86
DCCF [15] 24.65 22.97 302.89 171.77
Ours (CNN) 24.05 21.81 282.77 163.07
Ours (ViT) 18.80 19.32 238.27 144.44

average of 10 logα, a value defined by the dataset, not by
the method. Therefore, the fPSNR does not provide any
new insights when comparing two methods.

A.2. Averaging Across the Dataset

Given K different images in a dataset, two different aver-
aging ways are to average K MSE values for each image, or
to average over all pixels in the dataset. These two values
are identical when all images are of the same size, which
cannot be assumed in our case using full-resolution image
datasets. In the main paper we show the average with re-
spect to all images, consistent with the literature. In Table 1
we provide the results averaged over pixels. We observe that
using pixel-average error metrics the ranking of the methods
in terms of performance does not change.

B. Results on Low-Resolution Images
In addition to the full-resolution evaluation provided in

the main paper, we compare our methods with other image
harmonization methods on lower-resolution images. Like
prior work, the lower-resolution images are obtained by
downsampling the images in the iHarmony4 dataset [4] to
256 × 256 pixels. The results are summarized in Table 2.
Again, our ViT-based method outperforms prior work on
the complete iHarmony4 dataset and only shows slightly
worse results on the HDay2night subset, which represents
the smallest part in the dataset.

C. Parameter Maps
Since smoothing regularization did not improve the per-

formance of our ViT-based model in the main paper, we
further investigate the differences between the parameter
maps of the model with and without smoothing regulariza-
tion. We visualize the full-resolution parameter maps for
an example image in Figure 1. Since the parameters have
12 dimensions, representing affine coefficients, we arrange
the first 9 parameter maps representing matrix coefficients

according to their position in the transformation matrix. We
further add the three parameter maps representing the trans-
lation part on the right side. Therefore, the first row shows
all the parameters that influence the first component of the
image, which in our case is the red value. Since the values
of the parameter map can vary, we provide two different
visualization methods. The first one, normalizes the param-
eter values according to the largest value across all the pa-
rameter dimensions, while the second map normalizes the
image according to the largest value in the respective chan-
nel. As can be seen in Fig. 1 (a) and (b), both parameter
maps without and with smoothing regularization look quite
similar. However, the parameter map with smoothing reg-
ularization, as expected, overall exhibits more smoothness
among the parameter values. Taking a closer look at the
parameter map without smoothing regularization, a block
pattern emerges that can be explained by the decoder archi-
tecture. The encoder splits the image into smaller patches,
and then the output patches are rearranged and processed by
a single deconvolutional layer. This block pattern is visible
in parameter maps, however, it is not visible in the final re-
sults. Since these blocks are caused by the architecture, they
cannot be smoothed using a regularization loss. Instead, the
smoohing regularization loss further restricts the potential
output space and pushes the network to find a solution that is
as uniform as possible. This decrease in flexibility leads to
less details, which eventually hurts the overall performance.

D. More PCT functions
To investigate the general effect of PCT functions on the

harmonization results, we test different functions in addi-
tion to the PCT functions introduced in the main paper. The
results are summarized in Table 3, where the mathematical
definitions for the multiplication, addition and linear PCT
function can be found in Eq. 7, 8 and 9, respectively. The
affine PCT function corresponds to the PCT function used
in the main paper.

hmul(p;θ) = (p1θ1, p2θ2, p3θ3)
T , (7)

hadd(p;θ) = (p1 + θ1, p2 + θ2, p3 + θ3)
T , (8)

hlinear(p;θ) = Wθp, Wθ =

θ1 θ2 θ3
θ4 θ5 θ6
θ7 θ8 θ9

 . (9)

For both CNN and ViT backbones, the results shown in
Table 3 underline that the affine PCT function introduced
in the main paper clearly outperforms all other functions.
It seems that by adding more parameters the network gains
more flexibility which eventually improves performance. If



(a) Visualization of parameter maps normalized by the largest parameter value over all channels. (Left) Arrangement of parameter maps. (Center)
PCT-Net (ViT) without smoothing regularization. (Right) PCT-Net (ViT) with smoothing regularization.

(b) Visualization of parameter maps normalized by the largest parameter of each individual channel. (Left) Arrangement of parameter maps. (Center)
PCT-Net (ViT) without smoothing regularization. (Right) PCT-Net (ViT) with smoothing regularization.

(c) Results. (Left) Composite image. (Center) Output image without smoothing regularization. (Right) Output image with smoothing regularization.

Figure 1. Parameter maps for ViT-based models without and with smoothing regularization In (a) and (b), the 12 parameter maps
of an example image are visualized while normalizing by the largest parameter value over all channels, and normalizing by the largest
parameter of each individual channel, respectively. Positive parameter values are shown in red, while negative values are shown in blue.
In (c), we show the output images created by applying the parameter map without and with smoothing regularization. Images are from [4].



Table 2. Quantitative performance on the low-resolution iHarmony4 dataset (256×256 pixels). Ours (ViT) outperforms all of the
previous works for the entire dataset as well as in almost all subsets. The best results are marked in bold, the second best are underlined.

Method
HAdobe5k subset HCOCO subset HDay2night subset HFlickr subset All (7,404)

fMSE↓ MSE↓ PSNR↑ fMSE↓ MSE↓ PSNR↑ fMSE↓ MSE↓ PSNR↑ fMSE↓ MSE↓ PSNR↑ fMSE↓ MSE↓ PSNR↑
Input 2051.61 345.54 28.16 996.59 69.37 33.94 1409.98 109.65 34.01 1574.37 264.35 28.32 1387.30 172.47 31.63
DoveNet [4] 380.39 52.32 34.34 551.01 36.72 35.83 1075.71 54.05 35.18 827.03 133.14 30.21 549.96 52.36 34.75
BargainNet [12] 279.66 39.94 35.34 397.85 24.84 37.03 835.63 50.98 35.67 698.40 97.32 31.34 405.23 37.82 35.88
Guo [7] 284.21 43.02 35.20 416.38 24.92 37.16 797.04 55.53 35.96 716.60 105.13 31.34 400.29 38.71 35.90
D-HT [6] 265.11 38.53 36.88 299.30 16.89 38.76 704.42 53.01 37.10 515.45 74.51 33.13 320.78 30.30 37.55
D-HT+ [5] 242.56 36.83 37.17 274.66 37.10 36.83 736.58 49.68 36.68 471.06 67.88 33.55 295.56 27.89 37.94
iSSAM [14] 173.96 21.88 38.08 266.19 16.48 39.16 590.97 40.59 37.72 443.65 69.67 33.56 264.96 24.44 38.19
iDIH+HRNet [14] N/A 21.36 37.35 N/A 14.01 39.64 N/A 50.61 37.68 N/A 60.41 34.03 252.00 22.00 38.31
CDTNet [3] N/A 20.62 38.24 N/A 16.25 39.15 N/A 36.72 37.95 N/A 68.61 33.55 252.05 23.75 38.23
S2CRNet [11] N/A 34.91 36.42 N/A 23.22 38.48 N/A 51.67 36.81 N/A 98.73 32.38 N/A 35.58 37.18
Harmonizer [8] 170.05 21.89 37.64 298.42 17.34 38.77 542.07 33.14 37.56 434.06 64.81 33.63 280.51 24.26 37.84
DCCF [15] 172.49 23.43 37.18 272.10 14.87 39.52 655.46 45.09 38.08 411.56 61.42 33.84 265.52 22.05 38.50
Sg-MHH [13] N/A 22.04 38.64 N/A 13.95 39.14 N/A 43.57 36.86 N/A 59.03 34.00 N/A 21.89 38.38
SCS-Co [8] 165.48 21.01 38.29 245.54 13.58 39.88 606.80 41.75 37.83 393.72 55.83 34.22 258.86 21.33 38.75
Ours (CNN) 182.71 23.76 38.83 275.61 16.61 39.35 732.89 49.92 37.34 425.65 66.15 33.82 273.50 24.83 38.54
Ours (ViT) 157.24 21.25 39.97 208.26 10.72 40.78 654.81 44.74 37.65 341.10 44.30 35.13 216.25 18.16 39.85

Table 3. Effect of PCT function on performance. We investigate
the impact of different PCT functions on the performance by eval-
uating on the iHarmony4 test set. The results are evaluated on the
full resolution images as well as images that were downsampled to
256× 256 pixels. The best results are marked in bold.

Backbone PCT
Full resolution images Downsampled images

fMSE↓ MSE↓ PSNR↑ fMSE↓ MSE↓ PSNR↑

CNN

multiplication 391.80 34.29 37.01 334.32 30.59 37.75
addition 333.82 29.52 37.24 283.99 25.86 38.27

linear 333.97 29.22 37.47 290.70 26.53 38.19
affine 296.84 25.32 38.05 268.22 23.94 38.63

ViT

multiplication 1228.88 141.57 32.04 1173.85 138.01 32.37
addition 287.36 23.21 38.17 240.93 20.31 39.29

linear 7594.78 757.18 23.14 741.32 23.32 317.15
affine 250.30 20.03 38.98 228.00 19.34 39.52

we compare the results of our CNN-based model on the
downsampled and full resolution images, we also notice
that increasing the number of parameters helps reduce the
degradation in performance that is observed when evaluat-
ing on full resolution. In the ViT-based model, we notice
that using linear and multiplication PCT functions results
in significantly worse performance. During training we ob-
served that the optimizer got stuck in a local minimum and
was not able to find a reasonable solution. This could prob-
ably be fixed by adjusting the learning rate in future exper-
iments. However, considering the experiments conducted
for the CNN-based model, we expect that the results would
follow the trend observed for the CNN-based model.

E. Images User Study

We provide the 26 images that we used for our user study
as well as the images which were predicted by the three
different harmonization methods in Fig. 2– 6.

F. More Image Results
We provide more qualitative results in Figure 7 and Fig-

ure 8 comparing our results to Harmonizer [10] and DCCF
[15] on the iHarmony4 test set. In Figure 7, we show ran-
domly selected images from the HFlickr, Hday2night and
HCOCO subsets. Results for the HAdobe5k subset, which
contains all the high-resolution images, are shown in Fig-
ure 8.
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Composite Harmonizer [10] DCCF [15] Ours (ViT)

Figure 2. Images used for the user study (No.1-5 of the 26 images). The foreground region of the composite image is outlined in green.
Foreground images are from the BIG dataset [2] or the RealHM dataset [9]. Background images are from [1].



Composite Harmonizer [10] DCCF [15] Ours (ViT)

Figure 3. Images used for the user study (No.6-10). The foreground region of the composite image is outlined in green. Foreground
images are from the BIG dataset [2] or the RealHM dataset [9]. Background images are from [1].



Composite Harmonizer [10] DCCF [15] Ours (ViT)

Figure 4. Images used for the user study (No.11-15). The foreground region of the composite image is outlined in green. Foreground
images are from the BIG dataset [2] or the RealHM dataset [9]. Background images are from [1].



Composite Harmonizer [10] DCCF [15] Ours (ViT)

Figure 5. Images used for the user study (No.16-21). The foreground region of the composite image is outlined in green. Foreground
images are from the BIG dataset [2] or the RealHM dataset [9]. Background images are from [1].



Composite Harmonizer [10] DCCF [15] Ours (ViT)

Figure 6. Images used for the user study (No.22-26). The foreground region of the composite image is outlined in green. Foreground
images are from the BIG dataset [2] or the RealHM dataset [9]. Background images are from [1].



Composite Harmonizer [10] DCCF [15] Ours (CNN) Ours (ViT) Ground Truth

Figure 7. Qualitative results on the HCOCO, HFlickr and Hday2night test subset We randomly select images from the HCOCO,
HFlickr and Hday2night test subsets [4] and compare the output of different methods. The foreground region of the composite image is
outlined in green.



Composite Harmonizer [10] DCCF [15] Ours (CNN) Ours (ViT) Ground Truth

Figure 8. Qualitative results on the HAdobe5k test subset We randomly select images from the HAdobe5k test subset [4] and compare the
output of different methods. The foreground region of the composite image is outlined in green.
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