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In this supplementary document, we report the details
of our approach (Sec. 1) and of the datasets used in the
experiments (Sec. 2). Then, we include additional results
to prove the robustness capability of our method (Sec. 3)
and its ability to provide good results also for the detection
task (Sec. 4). Furthermore, we show qualitative results by
means of localization and confidence maps and finally we
present failure cases (Sec. 5). Code is publicly available at
https://grip-unina.github.io/TruFor/.

1. Implementation details

Architecture. The anomaly localization network is shown
in Fig. 2. The feature extraction backbone in the en-
coder is based on a transformer-based segmentation archi-
tecture [22]. The RGB and the Noiseprint++ feature maps
are combined using a Cross-Modal Feature Rectification
Module (CM-FRM) [14]. Each feature extraction branch
has 4 Transformer blocks, and a CM-FRM block between
each transformer block. The Transformer blocks are based
on the Mix Transformer encoder B2 (MiT-B2) proposed for
semantic segmentation and are pretrained on ImageNet, as
suggested in [22]. The Mix Transformer encoder includes
self-attention mechanisms and channel-wise operations. It
relies on spatial convolutions and not on positional encod-
ings. This is important in order to work with images of any
size and to obtain a localization map with the same resolu-
tion as the input image.

The CM-FRM block exploits the interactions between
the image semantic (RGB) and residual (Noiseprint++) fea-
tures. It performs channel-wise and spatial-wise rectifi-
cations, which consists of a weighted sum of the feature
map of both branches. The weights are calculated along
the channel dimension and the spatial dimension sepa-
rately, combining both feature maps. The Feature Fusion
Module (FFM) uses an efficient cross-attention mechanism,
without positional encoding, to merge the feature maps of
Noiseprint++ and RGB image and the outputs of the four
FFMs represent the input of the decoder. We use the All-
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Figure 1. Some examples of real and manipulated images and re-
lated reference maps from the CocoGlide dataset. For each image
we indicate the prompt that drives the synthetic generation.

MLP decoder proposed in [22], which is a lightweight ar-
chitecture formed by only 1×1 convolution layers and bi-
linear up-samplers. The decoder for the confidence map has
the same All-MLP architecture. The forgery detector net-
work takes as input the pooled features from anomaly and
confidence maps, and consists of 2 fully connected layers
with RELU activation: 8D → 128D → 1D output.

Experiments have been conducted using one NVIDIA
RTX A6000 GPU. Training times for each phase are 6.5
days, 6 days, 2 days, respectively. The inference time is
about 1.17 sec for an image of 3.2 megapixels. As for the
model size, the number of parameters for TruFor is 68.7M,
that are less than those used by the top three competitors:
CAT-Net v2 (114.3M), MVSS-Net (146.9M) and IF-OSN
(128.8M).

Noiseprint++ training. For Noiseprint++ training, each
batch includes 160 patches of 64 × 64 pixels. These
patches are obtained from 5 camera models and 4 differ-
ent images for each camera model. The resulting 20 im-
ages are subjected to 4 different editing histories, which are
a combination of random resizing, compression and con-
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Figure 2. Anomaly localization network.

trast/brightness adjustments, for a total of 512 possible edit-
ing histories. Training is performed for a total of 50 epochs,
and each epoch includes 8800 training steps. An Adam op-
timizer is used with an initial learning rate of 0.001, that is
reduced by 10 times every 10 epochs.

Localization and detection training. For localization and
detection tasks we adopted the datasets used for training and
validation also used in [11], which comprises both pristine
and fake images with the corresponding reference maps.
The input image is cropped to 512 × 512 during training.
Details of the dataset are reported in Tab. 1. To avoid bi-
ases due to an imbalance in training dataset size, we sample
each dataset equally for each training epoch. The networks
are trained for 100 epochs with a batch size equal to 18 and
a learning rate that starts with 0.005 and decays to zero. An
SGD optimizer is used with a momentum of 0.9. Before
Noiseprint++ extraction, we apply the following augmenta-
tions on RGB inputs: resizing in the range [0.5 - 1.5] and
JPEG compression with quality factor from 30 to 100.

2. Datasets

To ensure that Noiseprint++ is trained on unaltered im-
ages, we verified that for each camera model, all collected
images have the same resolution, are in JPEG format with
the same quantization matrix and that no photo editing soft-
ware is present in the metadata (e.g. photoshop, gimp).

As for the anomaly localization and detection, the
datasets used for training and testing are reported in Tab. 1.
Training includes CASIA v2 [6], FantasticReality [10],
IMD2020 [17] and a dataset of manipulated images created
by [11] by applying splicing and copy-move using either
COCO [13] training set or RAISE [3] as a source and object
masks from COCO as target regions. For OpenForensics
[12] and NIST16 [7], we evaluate the performance on a test
subset of 2000 images (out of 19,000) and 160 images, re-
spectively. The latter choice follows the common train/test
split that most of the recent works apply [9, 18, 23, 24].
CocoGlide is a manipulated dataset generated by us using

the COCO validation dataset [13]. We extract 256 × 256
pixel crops and then use an object mask and its correspond-
ing label as the forgery region and the text prompt that are
fed to GLIDE [16]. In this way, we generated new synthetic
objects of the same category for a total of 512 manipulated
images. Some examples are shown in Fig. 1. Note that
we avoided overlap with [11], since CocoGlide is based on
images from the validation set, while the tampered COCO
dataset from the training set.

3. Additional robustness analysis

In this Section we include additional experiments to
show the ability of our method to be robust to different
forms of degradations and compare them with those ob-
tained by the top performers [2, 11, 21]. We apply the fol-
lowing transformations on the CASIA v1 dataset: gaussian
blur (varying the kernel size), gaussian noise (varying the
standard deviation), gamma correction (varying the power

Number of images Manipulation

Name [ref] Real Fake Sp CM

CASIA v2 [6] 7491 5105 ✓ ✓

FantasticReality [10] 16592 19423 ✓

IMD2020 [17] 414 2010 ✓ ✓

tampered COCO [11] - 400K ✓ ✓

tampered RAISE [11] 24462 400K ✓

CASIA v1+ [5] 800 921 ✓ ✓

Coverage [20] 100 100 ✓

Columbia [8] 183 180 ✓

NIST16 [7] 160 160 ✓ ✓

DSO-1 [4] 100 100 ✓

VIPP [1] 69 69 ✓ ✓

OpenForensics [12] - 2000 ✓

CocoGlide 512 512 ✓

Table 1. List of datasets used for training and testing (Sp=splicing,
CM=copymove).
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Figure 3. Robustness analysis against different processing operations on CASIA v1. Pixel-level F1 performance (best threshold) is shown.

CASIA v1 Columbia DSO-1 NIST16 AVG
Method Fb Wa Wb Wc Fb Wa Wb Wc Fb Wa Wb Wc Fb Wa Wb Wc Fb Wa Wb Wc

IF-OSN [21] .513 .524 .507 .454 .741 .752 .756 .760 .484 .395 .416 .414 .315 .302 .292 .282 .513 .493 .493 .478
CAT-Net v2 [11] .681 .508 .469 .206 .964 .952 .958 .903 .310 .247 .240 .237 .219 .238 .243 .244 .544 .486 .478 .398

MVSS-Net [2] .469 .444 .480 .339 .752 .747 .758 .752 .356 .308 .354 .329 .305 .252 .300 .269 .471 .438 .473 .422
TruFor (ours) .716 .713 .676 .615 .797 .798 .835 .820 .685 .465 .515 .469 .338 .384 .308 .358 .634 .590 .584 .566

Table 2. Pixel-level F1 performance (fixed threshold) on datasets uploaded on Facebook (Fb), WhatsApp (Wa), Weibo (Wb), WeChat
(Wc).

Method Columbia Coverage CASIA v1 NIST16 Avg

ManTraNet .824 .819 .817 .795 .814
SPAN .936 .922 .797 .840 .874
PSCCNet .982 .847 .829 .855 .878
ObjectFormer .955 .928 .843 .872 .900
TruFor .947 .925 .957 .877 .927

Table 3. Pixel-level AUC, for the comparisons the values are taken
from Tab. 1 of [18]

factor) and JPEG compression (varying the quality level).
The results are shown in Fig. 3. We can observe that our
method is more robust than the state-of-the-art irrespective
of the type of degradation.

We also check robustness to other social media networks,
beyond those already considered in the main paper, i.e.
Facebook and Whatsapp (Tab. 4 in main paper). More
specifically, we use the whole dataset proposed in [21],
where images from some standard forensic datasets, CASIA
v11 [6], Columbia [8], DSO-1 [4] and NIST16 [7], were
also uploaded on Weibo and WeChat. Results are presented
in Tab. 2 and show a consistent gain over all the different
datasets and social platforms except on Columbia, where
CAT-Net v2 achieves better performance. On average how-
ever, we have a gain of around 16%, 19%, 18% and 18%
with respect to the second best on Facebook, Whatsapp,
Weibo and WeChat, respectively.

Comparison with ObjectFormer. Note that an exhaus-
1Actually, we used the v1+ version [5], where real images of v1 (shared

with v2 and present in our training set) are replaced by images from the
COREL dataset [19].

tive and equitable comparison with [18] is not feasible as
they do not provide their trained model. We provide a pixel-
level comparison of localization performance in Tab. 3 us-
ing values for [15, 18] from the paper. Our method is com-
petitive or better than [18] across various test datasets, and
outperforms that on average.

4. Additional detection results
In this Section, we give some more insights on the image

level detection performance of our method. We first inves-
tigate the role of the confidence map in the detection strat-
egy. In Tab. 4, we perform an ablation where we observe
substantial improvements with the confidence maps both in
terms of AUC and Accuracy.

Image-level metrics require calibrating the detection
score for a particular dataset (or certain methods fine-tune
on specific datasets [18]). In Tab. 2 of the main paper, we
report the balanced accuracies evaluated on seven datasets,
and the average of them considering a fixed threshold equal
to 0.5. For methods that do not provide an explicit detec-
tion score, we use max pooling on the localization map.
In Fig. 4, we show the accuracy (averaged over the seven
datasets) as a function of the threshold. One can observe
the accuracy of other methods, which rely on max pooling,
increase with higher thresholds - this is indicative of many
false positives in the localization maps from these meth-
ods. In contrast, our method combines various confidence
weighted pooling statistics, making it more robust.

Table 5 shows the true negative rate (TNR), true positive
rate (TPR), and average accuracy considering both a fixed
threshold of 0.5 and the best threshold for each technique.



Original Res Res&Cmp

AUC Acc AUC Acc AUC Acc

w/o conf. map .877 .785 .847 .730 .719 .610
w conf. map .996 .905 .949 .910 .740 .675

Table 4. Ablation image-level results in terms of AUC and accu-
racy considering the use (or not) of the confidence map.

We can notice that using a fixed threshold with our method
we can significantly decrease the false alarms rate (around
80% lower) at the cost of increasing miss detection (around
30% higher), by achieving an average improvement in terms
of accuracy of 25%. All the state-of-the-art approaches have
the problem of a high number of false alarms with a best
threshold that assumes values almost equal to 1. Also in this
experiment where results are averaged on all seven datasets,
we can appreciate the importance to include the confidence
analysis during detection.

5. Qualitative results

In Fig. 5 we show some results on fake and pristine im-
ages together with the relative confidence map and the final
integrity score. We can see that the confidence map can
help to correct false positive predictions and provide a more
reliable integrity score. Instead, in Fig. 6 different failure
cases. In the first row, the manipulation was correctly lo-
calized, however, the confidence map wrongly hints that it
could be a false alarm. A possible explanation is that the
area is very uniform, which can lead to false positives. A
similar situation is presented in the second row, since the
plant has a very uniform and dark texture, which misleads
the confidence extractor. Another failure case can be rep-
resented by the other way around, where we have a false
positive on a pristine image, and the confidence map not
correcting it.

In Fig. 7 we show some qualitative results on manip-
ulated images (the forged area is outlined in yellow) and
compare with the state-of-the-art. For these examples, the
localized area appears sharper and more accurate than the
other methods. We also add the confidence maps that can
tell us the level of reliability of the anomaly maps and re-
move potential false alarms. Note the dark regions on the
boundary of real forgeries - indicating lower confidence in
the anomaly label assignment of intermediate regions.

Finally, in Fig. 8, we show a few examples of false
alarms on pristine images. Other methods tend to focus
on semantically relevant or highly saturated regions lead-
ing to false detections. TruFor’s localization maps exhibit a
weaker response, and most of these are discarded due to the
confidence map, leading to a correct image-level decision.
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Figure 4. Image-level Detection Accuracy as a function of detec-
tion score threshold (averaged over 7 test datasets).

fixed best

TNR TPR Acc th TNR TPR Acc

CAT-Net v2 .416 .882 .649 .955 .840 .618 .729
IF-OSN .182 .907 .545 .968 .763 .548 .656
MVSS-Net .285 .886 .586 .957 .806 .544 .675
TruFor (max) .109 .967 .538 .996 .900 .573 .736
TruFor (w/o c.) .859 .575 .717 .427 .818 .640 .729
TruFor .909 .656 .783 .380 .851 .729 .790

Table 5. Detection results: Image-level TNR, TPR, and Accuracy
averaged on seven datasets (fixed and best threshold).
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Figure 7. Some qualitative results, compared with the state-of-the-art, on manipulated images (the forged area is outlined in yellow). Dark
regions in the confidence map indicate regions of low confidence in the TruFor localization map.
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Figure 8. Some qualitative results, compared with the state-of-the-art, on pristine images. Dark regions in the confidence map indicate
regions of low confidence in the TruFor localization map.
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