
[Supplementary] NIFF: Alleviating Forgetting in Generalized Few-Shot Object
Detection via Neural Instance Feature Forging

A. Implementation Details
A.1. Generator Training

Using the base trained RoI head parameters and the gath-
ered statistics in the data watchers, we train the generator for
2k iterations. We optimize the generator using SGD with a
batch size of 600 features, momentum of 0.9, and weight
decay of 5e−5. The learning rate is set to 0.001. The scal-
ing factor for the KL divergence loss is set to λKL = 5.

A.2. Novel Training

During novel training, the model is also optimized using
SGD with batch size of 16 and learning rate of 0.005 and
0.01 for MS-COCO and PASCAL-VOC, respectively. We
set the warmup iterations to 200. Step decays are performed
at 2500, 4000, and 6400 for MS-COCO 5, 10,and 30-shot
settings, respectively. As for PASCAL-VOC, we perform
the decay for the first three shot settings at 1000 and 1500
for the 5 and 10-shot settings. To perform the distillation,
we unfreeze the RoI head and down scale its learning rate
by a factor of 0.015. We set the scaling factors as follows:
λF = 0.1 and 0.01 for the mEWC penalty term.

B. Further Ablations

Data Watcher Config. 10-Shot Inference
AP bAP nAP AR bAR nAR

(1) After Act. 32.0 36.7 18.0 29.9 32.7 21.5
(2) Before FBN 32.2 36.9 18.1 30.1 33.0 21.1
(3) Both 32.2 36.6 19.1 29.6 32.1 22.3

Table 1. Where to place the data watchers to record useful statistics
for better feature generation with respect to the frozen BatchNorm
layers and the activations that follow. Results on MS-COCO 10-
shot.

Which statistics matter? In Tab. 1, we study which
statistics are needed to capture the base data distribution.
To this end, we place data watchers in different places and
train different generators accordingly. Then we finetune on
the novel data in each setup and report the final detection
results. The different locations for placing data watchers
are: (1) after the activations (Act.) following the frozen-

Model Configuration 10-Shot Inference
AP bAP nAP AR bAR nAR

0 DeFRCN 30.6 34.6 18.6 29.1 32.0 20.5
A DeFRCN (Base-Free) 18.2 18.5 17.4 17.5 16.2 21.3
B + Generator 30.7 35.0 17.8 28.6 31.3 20.9
C + CFA 32.0 36.4 18.5 29.6 32.4 21.3
D + DA 32.2 36.8 18.4 29.9 32.6 21.7
E + mEWC (NIFF) 32.2 36.6 19.1 29.6 32.1 22.3

Table 2. Incremental component analysis on MS-COCO (10-shot).

BN (FBN), (2) before the FBN layers, (3) both locations.
As we can observe, locations (2) and (3) yield empirically
better results than (1). Although the AP of (2) and (3) is the
same, we choose (3) as its nAP is slightly higher.

Component analysis. In Tab. 2, we start by reporting
the results of the state-of-the-art model in transfer-learning
namely, DeFRCN [5] (Config 0)). In Config A, we train
a DeFRCN model on novel data without using the base
classes. We consider this as our baseline, to which we grad-
ually introduce our contributions in an incremental fashion.
Note that without using base data, DeFRCN performance
drops dramatically on the base classes (by 40.5%). In Con-
fig B, we train our standalone lightweight generator and
finetune DeFRCN on novel data while replaying synthetic
base features from the generator. We show that we are able
to almost recover the overall performance of DeFRCN in
Config 0, all without using any base data. Next, in Config
C, we apply CFA [2] on the gradients which are backprop-
agated on the RoI head. In Config D and E, we add the
chosen pixel-level data augmentation (DA) and parameter-
level (mEWC) regularization techniques, which allow us to
achieve state-of-the-art results in the overall performance.

B.1. Generator Architecture

In Tab. 3, we investigate the impact various architectural
design choices on the overall detection performance. The
utilized generator throughout this work comprises five con-
volutional layers (L = 5) with kernel size (K = 3) and
an input noise dimension (z = 100). To study the effect of
each of these design choices, we change only one factor and
leave the rest unchanged. Firstly, increasing the number of
layers contribute to higher overall performance where the
base performance is noticeably improved. However, past

1



Model Configuration 10-Shot Inference
AP bAP nAP AR

Number of Layers (L=3) 27.6 31.3 16.4 27.6
Number of Layers (L=5) 30.7 35.0 17.7 28.8
Number of Layers (L=7) 31.2 35.7 17.7 29.3
Number of Layers (L=10) 31.1 35.6 17.5 29.2

Kernel Size (K=1) 30.2 34.7 17.7 28.3
Kernel Size (K=3) 30.7 35.0 17.7 28.8
Kernel Size (K=5) 30.5 34.8 17.6 28.7
Kernel Size (K=7) 30.6 34.8 17.8 28.6

Noise Dimension (z=50) 30.5 34.9 17.6 28.5
Noise Dimension (z=100) 30.7 35.0 17.7 28.8
Noise Dimension (z=1000) 30.7 35.0 17.7 28.8

Table 3. Impact of various generator architectural design choices
on MS-COCO (10-shot). We finetune DeFRCN without base data
using the generator without any regularization techniques.

L = 7 the performance starts to slightly drop. Secondly,
we show that increasing the kernel size do not result in any
performance gain. Finally, increasing the noise dimension
past z = 100 yields no change in the performance implying
that the generator is able to generate diverse high-quality
features without requiring high-dimensional noise vectors.

B.2. mEWC VS EWC

Configuration 10-Shot Inference
AP bAP nAP AR

EWC (λEWC = 1.0) 33.0 38.1 17.6 30.3
EWC (λEWC = 0.1) 32.9 38.2 17.1 30.6
EWC (λEWC = 0.01) 32.2 37.7 15.9 29.8
EWC (λEWC = 0.001) 31.8 36.7 17.3 29.7

mEWC (λEWC = 1.0) 33.0 38.5 16.5 30.5
mEWC (λEWC = 0.1) 33.0 38.4 16.6 30.5
mEWC (λEWC = 0.01) 32.2 36.6 19.1 29.8
mEWC (λEWC = 0.001) 30.3 33.9 19.3 28.8

Table 4. A comparison between the EWC with the full Fisher
matrix VS the utilized mEWC with mean Fisher matrix on NIFF-
DEFRCN on MS-COCO (10-shot). Further, a study on the impact
of scaling EWC/mEWC regularization term.

In Tab. 4, we show the difference between the vanilla
EWC [4] with the full Fisher matrix and the utilized mean
EWC (mEWC) using a mean Fisher matrix per parame-
ter. Moreover, we show the effect of various scaling factors
λEWC when applying the EWC/mEWC penalty term dur-
ing novel training. The lower the scaling factor, the more
changes in parameters are allowed. Firstly, we observe that
EWC can better maintain the base performance along dif-
ferent scaling factors at the price of the novel performance.
Secondly, as we reduce the scaling factor for mEWC, the
base performance drops compared to EWC. However, we
achieve the same AP as EWC at λEWC = 0.01 with a lower

bAP and a higher nAP. Hence, we use this setting across
our experiments. The user can decide on the bAP and nAP
trade-off according to the application. Finally, we observe
that in mEWC, the nAP improves with lower λEWC, how-
ever, at the cost of lower bAP.

B.3. Novel Training Loss Components

Model Configuration 10-Shot Inference
AP bAP nAP AR

DeFRCN w/G. 30.7 35.0 17.7 28.8

w/o Lconf 28.9 32.6 17.7 26.4
Lconf using KL 30.7 35.0 17.7 28.2

w/o Weighted feature terms 29.8 33.9 17.6 28.0
w/o L1 Reg. term 30.5 34.8 17.8 28.6

Table 5. Impact of various finetuning loss components on MS-
COCO (10-shot). We finetune DeFRCN without base data using
the generator without any regularization techniques.

In Tab. 5, we study the impact of various finetuning loss
components. In the first row, we start with finetuning De-
FRCN with the proposed generator and the novel training
loss proposed in the main paper LN without any regulariza-
tion (i.e., CFA, data augmentations, and mEWC). Upon re-
moving the cross-entropy confidence loss Lconf (row2), we
notice that the base performance drop by 2.4 points caus-
ing the overall AP and the AR to drop. This denotes that
the confidence loss helps generating base base features with
higher probabilities at the final softmax layer. If we replace
the cross-entropy loss with KL divergence (row3) between
the teacher and student logits, we get the same results but
with a slight drop in the AR. As for the distillation terms,
we show that by removing the weighted feature distillation
terms (row 4), the base and overall performance drops. Fi-
nally, if the proposed L1 regression distillation term is re-
moved (row 5), we notice a slight decrease in the base and
overall performance. Motivated by this ablation, we opt to
perform novel training with the overall loss containing the
confidence and feature distillation loss terms.

C. Generator Training Analysis

In Fig. 1a, we show a TSNE visualization of the real and
fake generated instance-level features for 10 random MS-
COCO base classes. We generate 30 features per class to
better visualize the generated feature distribution. We show
that the forged features are consistently near the real base
features (with some overlaps) confirming that the generator
is able to depict near-real base feature distribution. Further-
more, we show the features generated using class-agnostic
statistics in Fig. 1b. In contrast to the features generated via
the class-wise stats, the fake samples are farther away from
the real ones.



Real

Fake

TSNE component 1

T
S

N
E

 c
om

po
ne

nt
 2

(a) A TSNE visualization of the generated fake
features via class-wise stats and real base features
for 10 random classes with 30 features per class
to better illustrate the forged features distribution.

Real

Fake

TSNE component 1

T
S

N
E

 c
om

po
ne

nt
 2

(b) A TSNE visualization of the generated fake
features via class-agnostic stats and real base fea-
tures for 10 random classes with 30 features per
class.

V
ar

ia
nc

e

Variance

Training steps

C
la

ss
 p

ro
ba

bi
li

ty
 [

%
]

Mean probabilities
Lowest class prob.

(c) A highlight of the fake class probabilities
along with the features variance. We show the
lowest class probability and the mean probabili-
ties across all base classes (MS-COCO).

Figure 1. A TSNE visualization of some generated features via class-wise (a) and class-agnostic (b) stats. The fake class probabilities as
well as the features’ variance during generator training is illustrated in (c).

Methods / Shots w/E w/B Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN-ft-full [6] ✗ ✓ 15.2 20.3 29.0 25.5 28.7 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1
TFA w/ fc [6] ✗ ✓ 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2

TFA w/ cos [6] ✗ ✓ 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
MPSR [8] ✗ ✓ 42.8 43.6 48.4 55.3 61.2 29.8 28.1 41.6 43.2 47.0 35.9 40.0 43.7 48.9 51.3

DeFRCN [5] ✗ ✓ 57.0 58.6 64.3 67.8 67.0 35.8 42.7 51.0 54.4 52.9 52.5 56.6 55.8 60.7 62.5
Meta R-CNN∗ [10] ✗ ✓ 16.8 20.1 20.3 38.2 43.7 7.7 12.0 14.9 21.9 31.1 9.2 13.9 26.2 29.2 36.2

FSRW [3] ✗ ✓ 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 39.2 19.2 21.7 25.7 40.6 41.3
MetaDet [7] ✗ ✓ 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1

FsDetView∗ [9] ✗ ✓ 25.4 20.4 37.4 36.1 42.3 22.9 21.7 22.6 25.6 29.2 32.4 19.0 29.8 33.2 39.8
CFA w/ fc [2] ✗ ✓ 40.0 35.5 40.9 54.1 56.9 22.2 27.1 35.2 38.5 40.9 29.7 35.1 39.5 47.2 51.3

CFA w/ cos [2] ✗ ✓ 41.2 43.6 49.5 56.5 57.3 21.3 27.4 35.3 39.1 42.1 31.7 39.1 44.6 49.9 52.6
CFA-DeFRCN [2] ✗ ✓ 58.2 63.3 65.8 68.9 67.1 37.1 45.5 51.3 55.2 53.8 54.7 57.8 56.9 60.0 63.3

DeFRCN ✗ ✗ 53.3 47.4 58.7 58.8 59.6 33.0 37.0 49.5 53.8 48.5 47.1 45.8 52.7 52.8 52.6
NIFF-DeFRCN ✗ ✗ 62.8 67.2 68.0 70.3 68.8 38.4 42.9 54.0 56.4 54.0 56.4 62.1 61.2 64.1 63.9

Retentive R-CNN [1] ✓ ✓ 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1
CFA w/ fc [2] ✓ ✓ 39.0 34.9 41.4 54.8 57.0 21.8 26.1 35.3 37.1 40.1 29.9 34.3 40.1 47.0 52.6

CFA w/ cos [2] ✓ ✓ 42.4 43.9 50.3 56.6 57.3 21.0 27.5 35.3 38.6 41.4 32.3 38.0 44.5 49.8 52.7
CFA-DeFRCN [2] ✓ ✓ 59.0 63.5 66.4 68.4 68.3 37.0 45.8 50.0 54.2 52.5 54.8 58.5 56.5 61.3 63.5

NIFF-DeFRCN ✓ ✗ 63.5 67.2 68.3 71.1 69.3 37.8 41.9 53.4 56.0 53.5 55.3 60.5 61.1 63.7 63.9

Table 6. PASCAL-VOC G-FSOD (nAP50) results for 1, 2, 3, 5, 10-shot settings for all three splits are reported. Similar to [1, 2], w/E
denotes the ensemble-based inference paradigm. The best and second-best results are color coded. w/B indicates whether the base data is
available during novel finetuning. ’-’ represents unrecorded results in prior works. ’*’ represents results reported in [2].

In Fig. 1c, we highlight the quality and diversity of the
generated features with respect to the feature variance. We
show the mean class probability (black) across all classes
for the generated features and the lowest class probability
(green). It can be seen that the generator can learn diverse
features with a high variance while maintaining high class
probabilities with 95% mean class probability and around
75% for the lowest class probability.

D. PASCAL-VOC Novel Results

We report the novel performance on PASCAL-VOC
(nAP50) in Tab. 6. We show that adopting NIFF achieves
state-of-the-art results with and without the ensemble eval-
uation protocol. As previously mentioned, although that the
performance on novel classes is not our primary objective,
NIFF-DeFRCN achieves the state-of-the-art on PASCAL-
VOC in all cases but the 2-shot setting in split 2 .

E. Multiple Runs

We run NIFF-DeFRCN using 10 and 30 different seeds
for MS-COCO and PASCAL-VOC, respectively. Then, we
compare with the baselines [2,5,6]. The aim is to investigate
the performance robustness over multiple runs.

MS-COCO. In Tab. 7, we show the results for MS-
COCO dataset. We notice that despite the absence of base
data, NIFF-DeFRCN consistently achieves a higher AP and
bAP over all shot settings.

PASCAL-VOC. In Tab. 8 and Tab. 9, we demonstrate
the AP50 and nAP50 results, respectively, for PASCAL-
VOC dataset. Similar to MS-COCO, we observe that NIFF-
DeFRCN consistently achieves a higher AP50 while deliv-
ering competitive results on the nAP50 over various shots.



Methods / Shots 5 shot 10 shot 30 shot
AP bAP nAP AP bAP nAP AP bAP nAP

TFA w/ fc [6] 25.6±0.5 31.8±0.5 6.9±0.7 26.2±0.5 32.0±0.5 9.1±0.5 28.4±0.3 33.8±0.3 12.0±0.4
TFA w/ cos [6] 25.9±0.6 32.3±0.6 7.0±0.7 26.6±0.5 32.4±0.6 9.1±0.5 28.7±0.4 34.2±0.4 12.1±0.4
CFA w/ fc [2] 29.1±0.3 36.2±0.3 7.7±0.6 29.9±0.3 36.7±0.2 9.6±0.6 30.8±0.2 36.6±0.2 13.6±0.3

CFA w/ cos [2] 29.3±0.2 36.0±0.2 9.2±0.5 30.2±0.2 36.6±0.1 11.2±0.5 31.1±0.1 36.6±0.1 14.8±0.2
DeFRCN [5] 27.8±0.3 32.6±0.3 13.6±0.7 29.7±0.2 34.0±0.2 16.8±0.6 31.4±0.1 34.8±0.1 21.2±0.4

CFA-DeFRCN [2] 28.4±0.2 32.8±0.2 15.2±0.5 30.2±0.2 34.0±0.2 18.8±0.4 31.7±0.1 34.6±0.1 23.0±0.3
NIFF-DeFRCN 31.1±0.1 36.6±0.0 14.6±0.2 32.1±0.1 36.8±0.1 18.0±0.2 33.3±0.0 37.7±0.1 20.0±0.1

Table 7. G-FSOD experimental results for 5,10,30-shot settings on MS-COCO. We report base (bAP), novel (nAP), and overall (AP) for
multiple runs using 10 different seeds.

Set Methods Shots
1 2 3 5 10

CFA w/ fc [2] 66.3±0.8 68.0±0.5 70.1±0.4 71.7±0.5 73.2±0.5
CFA w/ cos [2] 66.5±0.9 69.2±0.6 71.1±0.6 72.5±0.4 73.4±0.4
DeFRCN [5] 67.8±1.4 71.3±0.8 72.6±0.5 73.6±0.5 74.1±0.5

CFA-DeFRCN [2] 69.0±1.4 72.6±0.7 73.1±0.4 74.0±0.5 74.3±0.4
All Set 1

NIFF-DeFRCN 71.2±0.8 74.2±0.4 75.4±0.4 76.3±0.3 76.7±0.3
CFA w/ fc [2] 64.9±0.9 66.4±0.7 68.3±0.5 69.6±0.3 70.8±0.5

CFA w/ cos [2] 64.1±0.9 66.5±0.5 68.1±0.5 69.3±0.2 70.4±0.4
DeFRCN [5] 65.2±1.0 68.0±0.8 69.2±0.6 70.6±0.6 71.3±0.5

CFA-DeFRCN [2] 66.4±1.0 69.0±0.8 70.4±0.7 71.3±0.7 72.1±0.4
All Set 2

NIFF-DeFRCN 68.0±0.8 70.5±0.5 71.7±0.5 72.8±0.4 73.7±0.3
CFA w/ fc [2] 65.2±0.8 66.8±0.8 69.1±0.7 70.9±0.6 72.3±0.4

CFA w/ cos [2] 64.9±1.2 67.5±1.0 69.7±0.8 71.6±0.5 72.7±0.3
DeFRCN [5] 66.9±2.0 70.6±0.8 71.2±0.6 72.9±0.5 73.5±0.3

CFA-DeFRCN [2] 68.3±1.6 71.4±0.8 72.3±0.5 73.5±0.5 74.0±0.3
All Set 3

NIFF-DeFRCN 70.7±0.7 73.7±0.5 74.7±0.4 75.5±0.3 76.3±0.2

Table 8. G-FSOD experimental results for 1,2,3,5,10-shot settings on the three all sets of Pascal VOC (AP50).

Set Methods Shots
1 2 3 5 10

CFA w/ fc [2] 28.2±3.1 35.0±1.9 41.9±1.4 47.8±1.6 53.3±1.6
CFA w/ cos [2] 30.9±3.9 40.9±2.5 47.8±2.4 53.1±1.4 56.1±1.4
DeFRCN [5] 43.8±4.3 57.5±2.5 61.4±1.7 65.3±0.9 67.0±1.4

CFA-DeFRCN [2] 45.4±4.9 60.3±2.2 62.1±1.4 66.4±0.9 67.6±1.2
Novel Set 1

NIFF-DeFRCN 46.0±3.0 57.2±1.7 62.0±1.4 65.5±1.1 67.2±1.1
CFA w/ fc [2] 20.0±3.5 26.4±2.9 32.8±2.2 37.3±1.7 41.8±1.9

CFA w/ cos [2] 21.0±3.5 29.0±2.3 34.6±2.3 38.9±1.2 43.0±1.9
DeFRCN [5] 31.5±3.6 40.9±2.2 45.6±2.0 50.1±1.4 52.9±1.1

CFA-DeFRCN [2] 32.9±3.7 42.3±2.2 47.1±1.9 51.2±1.4 55.3±1.3
Novel Set 2

NIFF-DeFRCN 30.1±3.0 39.6±1.8 45.0±1.9 49.4±1.6 52.8±1.3
CFA w/ fc [2] 20.3±3.4 26.4±3.1 34.3±2.5 41.2±2.4 46.5±1.6

CFA w/ cos [2] 21.5±4.7 30.4±4.1 38.4±2.8 45.5±2.1 49.9±1.0
DeFRCN [5] 38.2±6.8 50.9±2.8 54.1±2.2 59.2±1.2 61.9±1.3

CFA-DeFRCN [2] 41.4±5.8 52.9±3.0 56.1±1.7 60.3±1.1 62.9±0.9
Novel Set 3

NIFF-DeFRCN 41.1±2.6 52.5±1.8 56.4±1.5 59.7±1.2 62.1±1.0

Table 9. G-FSOD experimental results for 1,2,3,5,10-shot settings on the three novel sets of Pascal VOC (nAP50).

F. Qualitative Results

We present various qualitative results in Fig. 2 on the
MS-COCO (10-shot). In the first column, we show images
with only base classes (green boxes) followed by images

with only novel classes (blue boxes) in the second column.
In the third column, we present images with both classes.
We chose to present these three cases to validate the perfor-
mance of the proposed NIFF in various scenarios. . Further,
we also present various failure cases in the last two columns.



Figure 2. Qualitative results of the proposed NIFF method (NIFF-DeFRCN) on the MS-COCO(10-shot) dataset. Success scenarios are
demonstrated in the first three columns show while the last two columns present the failure scenarios. Base classes are denoted by green
bounding boxes while novel classes are colored with blue.



References
[1] Zhibo Fan, Yuchen Ma, Zeming Li, and Jian Sun. General-

ized few-shot object detection without forgetting. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4527–4536, 2021. 3

[2] Karim Guirguis, Ahmed Hendawy, George Eskandar, Mo-
hamed Abdelsamad, Matthias Kayser, and Jürgen Beyerer.
Cfa: Constraint-based finetuning approach for generalized
few-shot object detection. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 4038–4048, 2022. 1, 3, 4

[3] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng,
and Trevor Darrell. Few-shot object detection via feature
reweighting. In IEEE International Conference on Computer
Vision, pages 8419–8428, 2018. 3

[4] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National
Academy of Sciences, 114, 2016. 2

[5] Limeng Qiao, Yuxuan Zhao, Zhiyuan Li, Xi Qiu, Jianan Wu,
and Chi Zhang. DeFRCN: Decoupled faster R-CNN for few-
shot object detection. In IEEE International Conference on
Computer Vision, 2021. 1, 3, 4

[6] Xin Wang, Thomas E. Huang, Trevor Darrell, Joseph E.
Gonzalez, and Fisher Yu. Frustratingly simple few-shot
object detection. In International Conference on Machine
Learning, pages 9919–9928, 2020. 3, 4

[7] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Meta-
learning to detect rare objects. In IEEE International
Conference on Computer Vision, pages 9924–9933, 2019.
3

[8] Jiaxi Wu, Songtao Liu, Di Huang, and Yunhong Wang.
Multi-scale positive sample refinement for few-shot object
detection. In European Conference on Computer Vision,
pages 456–472, 2020. 3

[9] Yang Xiao and Renaud Marlet. Few-shot object detection
and viewpoint estimation for objects in the wild. In European
Conference on Computer Vision, pages 192–210, 2020. 3

[10] Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xi-
aodan Liang, and Liang Lin. Meta R-CNN: Towards gen-
eral solver for instance-level low-shot learning. In IEEE
International Conference on Computer Vision, pages 9577–
9586, 2019. 3


