[Supplementary] NIFF: Alleviating Forgetting in Generalized Few-Shot Object
Detection via Neural Instance Feature Forging

A. Implementation Details
A.1. Generator Training

Using the base trained Rol head parameters and the gath-
ered statistics in the data watchers, we train the generator for
2k iterations. We optimize the generator using SGD with a
batch size of 600 features, momentum of 0.9, and weight
decay of 5e~5. The learning rate is set to 0.001. The scal-
ing factor for the KL divergence loss is set to Ax. = 5.

A.2. Novel Training

During novel training, the model is also optimized using
SGD with batch size of 16 and learning rate of 0.005 and
0.01 for MS-COCO and PASCAL-VOC, respectively. We
set the warmup iterations to 200. Step decays are performed
at 2500, 4000, and 6400 for MS-COCO 5, 10,and 30-shot
settings, respectively. As for PASCAL-VOC, we perform
the decay for the first three shot settings at 1000 and 1500
for the 5 and 10-shot settings. To perform the distillation,
we unfreeze the Rol head and down scale its learning rate
by a factor of 0.015. We set the scaling factors as follows:
Ar = 0.1 and 0.01 for the mEWC penalty term.

B. Further Ablations
10-Shot Inference
Data Watcher Config. ‘ AP bAP nAP ‘ AR bAR nAR
(1) After Act. 320 36.7 18.0 | 299 327 215
(2) Before FBN 322 369 18.1 | 30.1 33.0 21.1
(3) Both 322 366 19.1 | 296 321 223

Table 1. Where to place the data watchers to record useful statistics
for better feature generation with respect to the frozen BatchNorm
layers and the activations that follow. Results on MS-COCO 10-
shot.

Which statistics matter? In Tab. 1, we study which
statistics are needed to capture the base data distribution.
To this end, we place data watchers in different places and
train different generators accordingly. Then we finetune on
the novel data in each setup and report the final detection
results. The different locations for placing data watchers
are: (1) after the activations (Act.) following the frozen-

10-Shot Inference

Model Configuration AP  bAP nAP ‘ AR bAR nAR

0 DeFRCN | 306 346 186 ]29.1 320 205
A DeFRCN (Base-Free) | 182 185 174 [ 175 162 213
B+ Generator 307 350 178|286 313 209
C +CFA 320 364 185|296 324 213
D +DA 322 368 184|299 326 217
E +mEWC (NIFF) 322 366 191 | 296 321 223

Table 2. Incremental component analysis on MS-COCO (10-shot).

BN (FBN), (2) before the FBN layers, (3) both locations.
As we can observe, locations (2) and (3) yield empirically
better results than (1). Although the AP of (2) and (3) is the
same, we choose (3) as its nAP is slightly higher.
Component analysis. In Tab. 2, we start by reporting
the results of the state-of-the-art model in transfer-learning
namely, DeFRCN [5] (Config 0)). In Config A, we train
a DeFRCN model on novel data without using the base
classes. We consider this as our baseline, to which we grad-
ually introduce our contributions in an incremental fashion.
Note that without using base data, DeFRCN performance
drops dramatically on the base classes (by 40.5%). In Con-
fig B, we train our standalone lightweight generator and
finetune DeFRCN on novel data while replaying synthetic
base features from the generator. We show that we are able
to almost recover the overall performance of DeFRCN in
Config 0, all without using any base data. Next, in Config
C, we apply CFA [2] on the gradients which are backprop-
agated on the Rol head. In Config D and E, we add the
chosen pixel-level data augmentation (DA) and parameter-
level (MEWC) regularization techniques, which allow us to
achieve state-of-the-art results in the overall performance.

B.1. Generator Architecture

In Tab. 3, we investigate the impact various architectural
design choices on the overall detection performance. The
utilized generator throughout this work comprises five con-
volutional layers (L = 5) with kernel size (KX = 3) and
an input noise dimension (z = 100). To study the effect of
each of these design choices, we change only one factor and
leave the rest unchanged. Firstly, increasing the number of
layers contribute to higher overall performance where the
base performance is noticeably improved. However, past



10-Shot Inference
AP DbAP nAP | AR

Number of Layers (L=3) 27.6 313 164 | 27.6
Number of Layers (L=5) 30.7 35.0 17.7 | 28.8
Number of Layers (L=7) 31.2 357 17.7 | 29.3
Number of Layers (L=10) 31.1 356 175 | 29.2

Model Configuration

Kernel Size (K=1) 30.2 347 17.7 | 283
Kernel Size (K=3) 30.7 350 17.7 | 28.8
Kernel Size (K=5) 30.5 348 17.6 | 28.7
Kernel Size (K=7) 30.6 348 17.8 | 28.6

Noise Dimension (z=50) 30.5 349 17.6 | 285
Noise Dimension (z=100) 30.7 350 17.7 | 28.8
Noise Dimension (z=1000) | 30.7 35.0 17.7 | 28.8

Table 3. Impact of various generator architectural design choices
on MS-COCO (10-shot). We finetune DeFRCN without base data
using the generator without any regularization techniques.

L = 7 the performance starts to slightly drop. Secondly,
we show that increasing the kernel size do not result in any
performance gain. Finally, increasing the noise dimension
past z = 100 yields no change in the performance implying
that the generator is able to generate diverse high-quality
features without requiring high-dimensional noise vectors.

B.2. mEWC VS EWC

10-Shot Inference

Configuration AP bAP nAP | AR
EWC (Agwc = 1.0) 33.0 38.1 17.6 | 303
EWC (Agwc = 0.1) 329 382 17.1 | 30.6

EWC (\gwe = 0.01) 322 377 159|298
EWC (O\gwe = 0.001) | 31.8 36.7 17.3 | 29.7

mEWC (Agwc = 1.0) 33.0 385 165 | 305
mEWC (Agwc = 0.1) 33.0 384 16.6 | 30.5
mEWC (Agwc = 0.01) | 322 36.6 19.1 | 29.8
mEWC (Agwc = 0.001) | 30.3 339 19.3 | 28.8

Table 4. A comparison between the EWC with the full Fisher
matrix VS the utilized mEWC with mean Fisher matrix on NIFF-
DEFRCN on MS-COCO (10-shot). Further, a study on the impact
of scaling EWC/mEWC regularization term.

In Tab. 4, we show the difference between the vanilla
EWC [4] with the full Fisher matrix and the utilized mean
EWC (mEWC) using a mean Fisher matrix per parame-
ter. Moreover, we show the effect of various scaling factors
Agwc when applying the EWC/mEWC penalty term dur-
ing novel training. The lower the scaling factor, the more
changes in parameters are allowed. Firstly, we observe that
EWC can better maintain the base performance along dif-
ferent scaling factors at the price of the novel performance.
Secondly, as we reduce the scaling factor for mEWC, the
base performance drops compared to EWC. However, we
achieve the same AP as EWC at A\gwc = 0.01 with a lower

bAP and a higher nAP. Hence, we use this setting across
our experiments. The user can decide on the bAP and nAP
trade-off according to the application. Finally, we observe
that in mEWC, the nAP improves with lower Agwc, how-
ever, at the cost of lower bAP.

B.3. Novel Training Loss Components

. 10-Shot Inference
Model Configuration AP bAP nAP ‘ AR
DeFRCN w/G. 30.7 350 17.7 | 28.8
W/0 Leonf 289 326 17.7 | 264
Lcons using KL 307 350 17.7 | 282
w/o Weighted feature terms | 29.8 339 17.6 | 28.0
w/o L1 Reg. term 30.5 348 17.8 | 28.6

Table 5. Impact of various finetuning loss components on MS-
COCO (10-shot). We finetune DeFRCN without base data using
the generator without any regularization techniques.

In Tab. 5, we study the impact of various finetuning loss
components. In the first row, we start with finetuning De-
FRCN with the proposed generator and the novel training
loss proposed in the main paper Ly without any regulariza-
tion (i.e., CFA, data augmentations, and mEWC). Upon re-
moving the cross-entropy confidence 1oss Lcons (row2), we
notice that the base performance drop by 2.4 points caus-
ing the overall AP and the AR to drop. This denotes that
the confidence loss helps generating base base features with
higher probabilities at the final softmax layer. If we replace
the cross-entropy loss with KL divergence (row3) between
the teacher and student logits, we get the same results but
with a slight drop in the AR. As for the distillation terms,
we show that by removing the weighted feature distillation
terms (row 4), the base and overall performance drops. Fi-
nally, if the proposed L1 regression distillation term is re-
moved (row 5), we notice a slight decrease in the base and
overall performance. Motivated by this ablation, we opt to
perform novel training with the overall loss containing the
confidence and feature distillation loss terms.

C. Generator Training Analysis

In Fig. 1a, we show a TSNE visualization of the real and
fake generated instance-level features for 10 random MS-
COCO base classes. We generate 30 features per class to
better visualize the generated feature distribution. We show
that the forged features are consistently near the real base
features (with some overlaps) confirming that the generator
is able to depict near-real base feature distribution. Further-
more, we show the features generated using class-agnostic
statistics in Fig. 1b. In contrast to the features generated via
the class-wise stats, the fake samples are farther away from
the real ones.
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(a) A TSNE visualization of the generated fake
features via class-wise stats and real base features
for 10 random classes with 30 features per class

to better illustrate the forged features distribution. class.

TSNE component 1

(b) A TSNE visualization of the generated fake
features via class-agnostic stats and real base fea-
tures for 10 random classes with 30 features per

Training steps

(c) A highlight of the fake class probabilities
along with the features variance. We show the
lowest class probability and the mean probabili-
ties across all base classes (MS-COCO).

Figure 1. A TSNE visualization of some generated features via class-wise (a) and class-agnostic (b) stats. The fake class probabilities as
well as the features’ variance during generator training is illustrated in (c).

Novel Set 1 Novel Set 2 Novel Set 3
Methods /Shots | w/E | wiB | 2 3 5 10 1 2 3 5 10 1 2 3 5 10
FRON-fCfall [0] X | 7 | 152 203 290 255 287 | 134 206 286 324 388 | 196 208 2®7 422 21
TFA w/ fc [6] X v | 368 201 436 557 570 | 182 290 334 355 390 | 277 336 425 487 502
TFA w/ cos [6] X | v | 398 361 447 557 560 | 235 269 341 351 391 | 308 348 428 495 498
MPSR [5] X | v | 428 436 484 553 612 | 208 281 416 432 470 | 359 400 437 489 513
DeFRCN [5] X | v | 570 586 643 678 670 | 358 427 510 544 529 | 525 566 558 607  62.5
Meta RCNN® [10] | X 7 1 168 201 203 382 437 | 77 120 149 219 31| 92 130 262 292 362
FSRW [3] X | v | 148 155 267 339 472 | 157 153 227 300 392 | 192 217 257 406 413
MetaDet [7] X | v | 189 206 302 368 496 | 21.8 231 278 317 430 | 206 239 204 439 44
FsDetView™ [9] X | v | 254 204 374 361 423 | 29 217 226 256 292 | 324 190 298 332 398
CrA Wi Te 0] X 7 | 200 355 400 541 569 | 222 271 352 385 409 | 27 351 395 472 513
CFA w/ cos [2] X | v | 412 436 495 565 573 | 213 274 353 300 421 | 317 391 446 499 526
CFA-DeFRCN [2] X | v | 582 633 658 689 67.1 | 371 455 513 552 538 | 547 578 569 600 633
DeFRCN X X | 333 474 387 588 596 | 330 370 495 538 485 | 471 458 527 28 526
NIFF-DeFRCN X X | 628 672 680 703 688 | 384 429 540 564 540 | 564 621 612 641 639
Retentive R-CNN[I] | v | < | 424 458 459 537 561 | 217 278 352 370 403 | 302 376 430 497 50.
CEA Wi Tc [0 7 | 7 | 390 349 414 548 570 | 218 261 353 371 401 | 29 343 401 470 526
CFA w/ cos [2] v | v | 24 439 503 566 573 | 210 275 353 386 414 | 323 380 445 498 527
CFA-DeFRCN [2] v | v | 590 635 664 684 683 | 370 458 500 542 525 | 548 585 565 613 635
NIFF-DeFRCN 7 X | 635 672 683 711 693 | 378 419 534 560 535 | 553 605 6L1 637 639

Table 6. PASCAL-VOC G-FSOD (nAP50) results for 1,2, 3,5, 10-shot settings for all three splits are reported.

Similar to [1, 2], w/E

denotes the ensemble-based inference paradigm. The best and second-best results are color coded. w/B indicates whether the base data is
available during novel finetuning. ’-’ represents unrecorded results in prior works. **’ represents results reported in [2].

In Fig. 1c, we highlight the quality and diversity of the
generated features with respect to the feature variance. We
show the mean class probability (black) across all classes
for the generated features and the lowest class probability
(green). It can be seen that the generator can learn diverse
features with a high variance while maintaining high class
probabilities with 95% mean class probability and around
75% for the lowest class probability.

D. PASCAL-VOC Novel Results

We report the novel performance on PASCAL-VOC
(nAP50) in Tab. 6. We show that adopting NIFF achieves
state-of-the-art results with and without the ensemble eval-
uation protocol. As previously mentioned, although that the
performance on novel classes is not our primary objective,
NIFF-DeFRCN achieves the state-of-the-art on PASCAL-
VOC in all cases but the 2-shot setting in split 2 .

E. Multiple Runs

We run NIFF-DeFRCN using 10 and 30 different seeds
for MS-COCO and PASCAL-VOC, respectively. Then, we
compare with the baselines [2,5,6]. The aim is to investigate
the performance robustness over multiple runs.

MS-COCO. In Tab. 7, we show the results for MS-
COCO dataset. We notice that despite the absence of base
data, NIFF-DeFRCN consistently achieves a higher AP and
bAP over all shot settings.

PASCAL-VOC. In Tab. 8 and Tab. 9, we demonstrate
the AP50 and nAPS50 results, respectively, for PASCAL-
VOC dataset. Similar to MS-COCO, we observe that NIFF-
DeFRCN consistently achieves a higher AP50 while deliv-
ering competitive results on the nAP50 over various shots.



5 shot 10 shot 30 shot

AP bAP nAP AP bAP nAP AP bAP nAP
TFA w/ fc [6] 25.64+0.5 31.840.5 6.9+0.7 | 26.2+0.5 32.04+0.5 9.1+0.5 | 28.4+0.3 33.840.3 12.04+0.4
TFA w/ cos [6] 25.94+0.6 32.34+0.6 7.0+£0.7 | 26.6+0.5 32.4+£06 9.1+0.5 | 28.7+0.4 342404 12.1+04
CFA w/ fc [2] 29.14+0.3 36.24+0.3 7.7£0.6 | 29.9+0.3 36.7+0.2 9.6+0.6 | 30.8+0.2 36.6+0.2 13.6+0.3
CFA w/ cos [2] 29.34+0.2 36.0+£0.2 9.2+0.5 30.24+0.2 36.6£0.1 11.2+0.5 | 31.1£0.1 36.6+£0.1 14.8+0.2
DeFRCN [5] 27.84+0.3 32.64+0.3 13.6+0.7 | 29.7+0.2 34.0+0.2 16.8+0.6 | 31.44+0.1 34.8+0.1 21.2+0.4
CFA-DeFRCN [2] | 28.440.2 32.840.2 152405 | 30.24+0.2 34.0+0.2 18.840.4 | 31.74+0.1 34.64+0.1 23.040.3
NIFF-DeFRCN | 31.14+0.1 36.64+0.0 14.64+0.2 | 32.1£0.1 36.84+0.1 18.04+0.2 | 33.3+0.0 37.7+0.1 20.0+0.1

Methods / Shots

Table 7. G-FSOD experimental results for 5,10,30-shot settings on MS-COCO. We report base (bAP), novel (nAP), and overall (AP) for
multiple runs using 10 different seeds.

Shots
1 2 3 5 10
CFA w/ fc [2] 66.3+0.8 68.0+0.5 70.1+04 71.7+£0.5 73.240.5
CFA w/ cos [2] 66.5+0.9 69.2+0.6 71.1+0.6 72.54+0.4 73.440.4
All Set 1 DeFRCN [5] 67.841.4 71.3+£08 72.6+0.5 73.6£0.5 74.1+0.5
CFA-DeFRCN [2] | 69.0+1.4 72.6+0.7 73.1+0.4 74.04+0.5 74.3+0.4
NIFF-DeFRCN 71.24+0.8 742404 754404 763+03 76.7+0.3
CFA w/ fc [2] 64.94+0.9 66.4+0.7 683+0.5 69.6+03 70.840.5
CFA w/ cos [2] 64.1+£0.9 66.5+£0.5 68.1+0.5 69.3+0.2 70.44+0.4
All Set 2 DeFRCN [5] 65.2+1.0 68.0£0.8 69.2+£0.6 70.6£0.6 71.3£0.5
CFA-DeFRCN [2] | 66.4+1.0 69.0+0.8 70.44+0.7 71.34+0.7 72.1+0.4
NIFF-DeFRCN 68.04+0.8 70.5£0.5 71.7£0.5 72.8+0.4 73.7+0.3
CFA w/ fc [2] 65.24+0.8 66.8+0.8 69.1+0.7 70.94+0.6 72.3+0.4
CFA w/ cos [2] 64.9+1.2 67.5£1.0 69.7£0.8 71.6+0.5 72.74+0.3
All Set 3 DeFRCN [5] 66.9+2.0 70.6£0.8 71.24+0.6 72.9+0.5 73.5+0.3
CFA-DeFRCN [2] | 68.3£1.6 71.4+0.8 723405 73.54+0.5 74.04+0.3
NIFF-DeFRCN 70.7+£0.7 73.7+0.5 74.7£04 755403 76.3+0.2

Set Methods

Table 8. G-FSOD experimental results for 1,2,3,5,10-shot settings on the three all sets of Pascal VOC (AP50).

Shots
1 2 3 5 10
CFA w/ fc [2] 28.2+3.1 35.0+£1.9 419414 47.84+1.6 53.3+1.6
CFA w/ cos [2] 309439 409+2.5 478424 53.1£14 56.1+14
Novel Set 1 DeFRCN [5] 43.8+4.3 575425 614+1.7 6534+09 67.0+14
CFA-DeFRCN [2] | 454449 60.3+2.2 62.1+£1.4 664409 67.6+1.2
NIFF-DeFRCN 46.04+3.0 572417 62.0+£14 655+1.1 67.2+1.1
CFA w/ fc [2] 20.0+£3.5 264+29 328422 37.34+1.7 41.841.9
CFA w/ cos [2] 21.04+3.5 29.0£2.3 34.6+2.3 389+12 43.0+1.9
Novel Set 2 DeFRCN [5] 31.5+£3.6 409+2.2 456£2.0 50.1+1.4 52.9+41.1
CFA-DeFRCN [2] | 32.9+3.7 423+22 47.1£1.9 512414 553413
NIFF-DeFRCN 30.1+£3.0 39.6£1.8 45.0+19 494+1.6 52.841.3
CFA w/ fc [2] 20.3+34 264+3.1 343425 412424 46.5+1.6
CFA w/ cos [2] 21.54+4.7 304+4.1 38.44+2.8 45542.1 49.9+1.0
Novel Set 3 DeFRCN [5] 38.2+6.8 509+£2.8 54.1£2.2 592412 61.9+1.3
CFA-DeFRCN [2] | 41.4+£5.8 529+3.0 56.1+£1.7 60.3+1.1 62.940.9
NIFF-DeFRCN 41.1+£2.6 52.54+1.8 56.4+1.5 59.7+12 62.1£1.0

Set Methods

Table 9. G-FSOD experimental results for 1,2,3,5,10-shot settings on the three novel sets of Pascal VOC (nAP50).

F. Qualitative Results with only novel classes (blue boxes) in the second column.
In the third column, we present images with both classes.

We present various qualitative results in Fig. 2 on the We chose to present these three cases to validate the perfor-
MS-COCO (10-shot). In the first column, we show images mance of the propqsed NI.FF in Variqus scenarios. . Further,
with only base classes (green boxes) followed by images we also present various failure cases in the last two columns.



Figure 2. Qualitative results of the proposed NIFF method (NIFF-DeFRCN) on the MS-COCO(10-shot) dataset. Success scenarios are
demonstrated in the first three columns show while the last two columns present the failure scenarios. Base classes are denoted by green
bounding boxes while novel classes are colored with blue.
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