
A. Ablation Studies
In this paragraph, we first investigate the sensitivity of

the model to batch size. Besides, we also conduct exten-
sive ablation studies of our ALOFT-S on the PACS dataset,
including the effects of different inserted positions in the
network and the sensitivity of hyperparameters, i.e., per-
turbation strength α and mask ratio r. The baseline is the
GFNet [2] trained on the aggregation of source domains.

Model sensitivity to batch size. We here investigate
the effect of different batch sizes on the performance of
our ALOFT, which involves the modeling and resampling
steps that are based on the samples of the current batch.
As reported in Tab. 1, the results indicate that our methods
perform relatively stably with different batch sizes, consis-
tently exceeding the baseline model by approximately 2.7%
(e.g., achieving 91.67% accuracy compared to 87.93% with
a batch size of 128). Moreover, we observe that as the batch
size increases, the generalization ability of the model also
improves due to the increased diversity of samples used to
model the spectrum distribution. Interestingly, even with a
small batch size of 4, our model still achieves promising re-
sults (i.e., 90.16% accuracy of ALOFT-E). We speculate the
reason to be that a small batch size could still provide some
useful information for modeling the spectrum distribution.
To maintain consistency with previous works [1, 5], we set
the batch size as 64 for all our experiments.

Table 1. Effect (%) of different batch sizes on the model perfor-
mance. We conduct the experiments on the PACS dataset. The
baseline is the GFNet model directly trained on source domains.

Batch size 4 8 16 32 64 128

Baseline 87.41 87.55 87.57 87.68 87.76 87.93

ALOFT-S 89.70 89.91 90.41 90.69 90.88 90.92
ALOFT-E 90.16 90.74 90.89 91.36 91.58 91.67

Different inserted positions of ALOFT-S. Here we ex-
plore the effectiveness of ALOFT-S in different positions of
the network. The experimental results are reported in Tab. 2.
The first line represents the results of the baseline model,
which is trained using all source domains directly based on
the strong baseline (i.e., DeepAll [6] on GFNet). We ob-
serve that no matter which layer the ALOFT-S is inserted
in, the model can consistently outperform the baseline by a
significant margin, e.g., 1.61% (89.37% vs. 87.76%) with
ALOFT-S inserted in the first MLP block. The results in-
dicate that our method is effective in enhancing the feature
diversity at different layers. Moreover, applying ALOFT-
S to all blocks of the network can achieve the best per-
formance and exceed the baseline by 3.12% (90.88% vs
87.76%), verifying that ALOFT-S can generate diverse data
variants to sufficiently simulate domain shifts during train-
ing. Therefore, ALOFT-S is inserted into all blocks in our
experiments, which is the same as ALOFT-E.

Table 2. Effect (%) of different inserted positions on PACS.
”Blo.1-4” represent four core MLP blocks of the network. The top
shows the results of applying ALOFT-S to each block. The bottom
is the results of the model with ALOFT-S in multiple blocks.

Position PACS

Blo.1 Blo.2 Blo.3 Blo.4 Art Cartoon Sketch Photo Avg.

- - - - 89.37 84.74 79.01 97.94 87.76
✓ - - - 90.67 84.60 83.84 98.38 89.37
- ✓ - - 90.09 84.77 82.67 98.68 89.05
- - ✓ - 90.97 85.45 81.39 98.50 89.08
- - - ✓ 91.31 84.64 82.69 98.44 89.27

✓ ✓ - - 90.58 85.84 84.30 98.74 89.86
✓ ✓ ✓ - 90.77 86.09 85.85 98.56 90.32
✓ ✓ ✓ ✓ 91.70 85.49 87.58 98.76 90.88
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(a) Effects of perturbation strength.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mask Ratio

87

88

89

90

91

A
cc

ur
ac

y 
(%

)

Baseline Ours

(b) Effects of mask ratio.

Figure 1. Effects of hyper-parameters including the perturbation α
and the low-frequency mask ratio r in ALOFT-S. The experiments
are conducted on PACS with GFNet as the backbone architecture.

Different inserted positions of ALOFT-S. Here we ex-
plore the effectiveness of ALOFT-S in different positions of
the network. The experimental results are reported in Tab. 2.
The first line represents the results of the baseline model,
which is trained using all source domains directly based on
the strong baseline (i.e., DeepAll [6] on GFNet). We ob-
serve that no matter which layer the ALOFT-S is inserted
in, the model can consistently outperform the baseline by a
significant margin, e.g., 1.61% (89.37% vs. 87.76%) with
ALOFT-S inserted in the first MLP block. The results in-
dicate that our method is effective in enhancing the feature
diversity at different layers. Moreover, applying ALOFT-
S to all blocks of the network can achieve the best per-
formance and exceed the baseline by 3.12% (90.88% vs
87.76%), verifying that ALOFT-S can generate diverse data
variants to sufficiently simulate domain shifts during train-
ing. Therefore, ALOFT-S is inserted into all blocks in our
experiments, which is the same as ALOFT-E.

Effects of the perturbation strength in ALOFT-S. We
also investigate the effects of perturbation strength α in
ALOFT-S. Recall that α is used to control the magnitude
of changing the low-frequency components of images. The
larger α, the greater the low-frequency spectrums change.
We evaluate α on PACS and report the results in Fig. 1a,
where α = 0 means the baseline model trained merely
with original frequency spectrums. As shown in Fig. 1a,
when α goes up from 0.1 to 1.0, the accuracy rises from



89.71% to 90.74%, indicating that relatively strong pertur-
bations can synthesize diverse data variants to sufficiently
simulate domain shifts during training. Thus, we recom-
mend setting α to a relatively large value, i.e., selecting α
from {0.8, 0.9, 1.0} as the default value.

Effects of the mask ratio in ALOFT-S. The mask ratio
r denotes the size of the binary mask M ∈ Rr×r, which
represents the scale of low-frequency components to be dis-
turbed. As presented in Fig. 1b, with r increasing from 0.1
to 0.5, the performance slides from 89.00% to 90.88%, in-
dicating that a relatively small could lead to insufficient per-
turbations of the low-frequency components. However, fur-
ther increasing r causes performance degradation because
the high-frequency components are disturbed, which hin-
ders the model learning of domain-invariant features. Thus,
we suggest practitioners to choose r from {0.4, 0.5, 0.6},
with r = 0.5 being the default setting in our experiments.

B. Further Analysis
We here conduct experiments to analyze the effective-

ness of our methods, including: 1) We analyze the impact
of low- and high-frequency components of frequency fea-
tures; 2) We compare our methods with other low-frequency
transforms; 3) We provide detailed qualitative analysis for
our methods from the frequency perspective.

Why not remove the low-frequency components? We
train the model only with the low-frequency components
of features by filtering out the high-frequency components
(namely Only LowF), and so is the model trained only with
the high-frequency components (namely Only HighF), with
a mask ratio r of 0.5. We also use ALOFT-S and ALOFT-
E to transform the high-frequency spectrum (HighF-S and
HighF-E) and both the low- and high-frequency spectrums
(Both-S and Both-E), respectively. As shown in Tab. 3,
compared to the baseline trained on original data, the model
trained with only low-frequency components of features
suffers from large performance degradation, indicating that
low-frequency components contain limited global seman-
tics. In contrast, the model trained with only high-frequency
components performs better than the baseline, suggesting
that high-frequency spectrums contain meaningful seman-
tics for generalizing to unseen domains. We notice that
the model trained with only high-frequency components
suffers performance degradation when generalizing to car-
toon and photo domains. We conjecture it is because the
low-frequency components contain some semantic informa-
tion, with which the model can achieve better performance.
Moreover, we observe that perturbing the high-frequency
spectrum can bring a slight improvement from the base-
line, as it encourages the model to explore semantic infor-
mation from the low-frequency components. However, di-
rectly perturbing the entire spectrum may result in a loss
of important semantic information and thus hurt the model

Table 3. Effects (%) of different components of images. The ex-
periments are conducted on the PACS dataset. The baseline is the
GFNet directly trained on the aggregation of source domains.

Method A C S P Avg.

Baseline 89.37 84.74 79.01 97.94 87.76

Only LowF 62.30 65.15 42.25 85.39 63.77
Only HighF 91.21 83.84 82.32 97.23 88.65
Swap LowF 90.31 85.73 85.09 98.17 89.82
Mix LowF 91.99 85.67 86.10 97.96 90.43

HighF-S 88.33 85.75 81.90 98.56 88.64
Both-S 91.50 85.78 85.44 98.44 90.29
HighF-E 90.72 85.79 81.85 98.32 89.17
Both-E 92.19 85.88 84.91 98.80 90.44

ALOFT-S (Ours) 91.70 85.49 87.18 98.56 90.73
ALOFT-E (Ours) 92.24 87.84 87.38 98.86 91.58

(a) Low-pass Filter on PACS. (b) High-pass Filter on PACS.

(c) Low-pass Filter on OfficeHome. (d) High-pass Filter on OfficeHome.

Figure 2. Comparison of ResNet-18, ResNet-50, GFNet, and our
ALOFT-S and ALOFT-E on the PACS and OfficeHome datasets.
A larger filter size for the low- and high-pass filtering means more
low- and high-frequency components, respectively.

performance. Therefore, we do not remove low-frequency
components but explore the ALOFT-S and ALOFT-E meth-
ods to dynamically transform the low-frequency spectrums
while preserving the high-frequency spectrums.

Comparison with other low-frequency transforms.
We consider the schemes that directly exchange or mix low-
frequency components between any two samples, namely
Swap LowF and Mix LowF, respectively. The results in
Tab. 3 show that both Swap LowF and Mix LowF can
achieve significant improvements from the Only-HighF,
verifying that the presence of low-frequency components
can help the model generalize well to the cartoon and photo
domains. Among these results, our methods still achieve
the best performance, e.g., ALOFT-E exceeds Mix LowF by
1.15% (91.58% vs 90.43%), demonstrating that our meth-



ods can simulate domain shifts more sufficiently than other
methods. Besides, since ALOFT-E directly models and re-
samples each element in the low-frequency spectrums, it
can synthesize more diverse data variants, thus helping the
model generalize better to target domains than ALOFT-S.

Qualitative analysis for ALOFT-S and ALOFT-E. To
study the effectiveness of our ALOFT-S and ALOFT-E,
we here conduct detailed qualitative analysis from the fre-
quency perspective, i.e., evaluate the model performance on
certain frequency components of test samples. We compare
our methods with ResNet-18, ResNet-50, and GFNet which
are trained directly on the aggregation of source domains.
Fig. 2 present the results on PACS and OfficeHome. As
shown in Fig. 2a and Fig. 2b, both ALOFT-S and ALOFT-
E can remarkably improve the model performance on the
high-frequency components of images, verifying their ef-
fectiveness in promoting the ability of the model to capture
global structure information. We notice that our methods
also perform well on the low-frequency components of im-
ages, which suggests that our methods help the model suf-
ficiently mine the semantic features in the low-frequency
components. Specifically, ALOFT-E performs better on the
high-frequency components, thus it can achieve better gen-
eralization ability than ALOFT-S. The results in Fig. 2c and
Fig. 2d justify the effectiveness of our methods again.

C. Additional Experiments
Domain discrepancy of extracted features To investi-

gate the influence of our methods, we calculate the inter-
domain distance (across all source domains) of the feature
maps extracted by different models, including ResNet-18,
GFNet [2], ALOFT-S, and ALOFT-E. We conduct the ex-
periments on both the PACS and OfficeHome datasets. We
calculate the inter-domain distance as below:

d =
2

K(K − 1)

K∑
k1=1

K∑
k2=1

||fk1
− fk2

||2, (1)

where K is the number of source domains, fk1
and fk2

denote the averaged feature maps of all samples from the
k1 and k2 domain, respectively. The results are reported in
Tab. 4, from which we observe that compared to the CNN-
based method (i.e., ResNet-18), the strong baseline (i.e.,
GFNet) can inherently narrow the domain gap because of
its better ability to capture global structure features. More-
over, our ALOFT-S and ALOFT-E can achieve smaller do-
main gaps than other methods, e.g., ALOFT-E reduces the
domain gap of GFNet by 2.62 (11.28 vs. 13.90) on the
PACS dataset. Even on the OfficeHome, a more challeng-
ing dataset with a larger number of classes than the PACS
dataset, our methods can still effectively narrow the inter-
domain gap among source domains. The reduced intra-
domain discrepancy among source domains indicates that

Table 4. The inter-domain distribution gap (×100) of the extracted
features by different methods. For the PACS dataset, we take Art
Painting as the target domain and the others as all source domains.
For OfficeHome, the target domain is Real-World and the others
are source domains. The smaller the inter-domain distance, the
better the generalization performance of the model.

Method ResNet-18 GFNet ALOFT-S ALOFT-E

PACS 15.97 13.90 11.76 11.28
OfficeHome 11.56 9.95 8.88 8.08

Table 5. The FLOPs (G) of ALOFT compared with other models.

Method ResNet-18 ResNet-50 RepMLP-S GFNet ViP-S ALOFT-S ALOFT-E

FLOPs (G) 1.82 4.13 2.85 2.05 6.92 2.05 2.05

Table 6. Effects (%) of ALOFT on the ResNet architectures. The
experiments are conducted on the PACS dataset.

Method Baseline ALOFT-S ALOFT-E

ResNet-18 79.68 84.80 85.13
ResNet-50 81.15 87.52 88.59

our methods can guide the model to extract more domain-
invariant information, thus helping the model generalize
better to unseen target domains than other methods.

Comparison of FLOPs with other models. We here
compare the FLOPs of our ALOFT-S and ALOFT-E with
other CNN-based or MLP-like models and report the results
in Tab. 5. We observe that most existing MLP-like models
suffer relatively large FLOPs, e.g., the FLOPs of RepMLP-
S is 2.85 and the FLOPs of ViP-S is 6.92. In contrast, the
FLOPs of our ALOFT methods are comparable to the small-
sized network ResNet-18, while our methods can achieve
the SOTA performance and exceed the ResNet-18 by a sig-
nificant magnitude, e.g., 11.90% (91.58% vs. 79.68%) on
the PACS dataset, proving the superiority of our ALOFT.

Effects of ALOFT on the ResNet architectures. To
validate the generalization of our ALOFT-S and ALOFT-
E modules, we insert the two modules into the ResNet-
18 and ResNet-50, respectively. The experiments are con-
ducted on the PACS dataset, and the results are reported in
Tab. 6. Our ALOFT modules can improve the generaliza-
tion ability of the model significantly on both the ResNet-18
and ResNet-50 networks, e.g., for the ALOFT-E module,
boosting 5.45% (85.13% vs. 79.68%) on ResNet-18 and
7.44% (88.59% vs. 81.15%) on ResNet-50, respectively.
The above results suggest that the ALOFT modules are ef-
fective and can be generalized to various networks.

Comparisons of CNN and MLP backbones. To avoid
the impact of the method itself, we here compare the dif-
ference between the base CNN backbone [6] and the pure
MLP model [4]. As shown in Fig. 3, we can observe that
the pure MLP model achieves a better performance than the



(a) High-pass Filtering (b) Low-pass Filtering

Figure 3. Comparison of the base CNN backbone (i.e., ResNet-18)
and the pure MLP backbone (i.e., MLP-mixer [4]) on the PACS
dataset. A larger filter size for the low- and high-pass filtering
means more low- and high-frequency components, respectively.
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Category Giraffe Horse Dog

Baseline 80.97 95.66 57.41
ALOFT-S 84.32 97.11 65.74
ALOFT-E 88.43 98.84 72.84

Figure 4. Effects (%) of ALOFT for the objects with similar
shapes but different textures. The figures on the left show some
categories in PACS, including dogs, horses, and giraffes that have
similar shapes but different textures. The right table presents the
accuracy of ALOFT-S and ALOFT-E in these categories.

base CNN backbone, which indicates the effectiveness of
the MLP model to capture global structure information.

For objects with similar shapes but different tex-
tures. In real-world scenes, there are instances of ob-
ject categories that have similar shapes but different tex-
tures, making it difficult to distinguish between them. The
key distinguishable information for these categories is of-
ten contained in the low-frequency spectrums. To resist
this challenge, it is crucial to preserve semantic informa-
tion by focusing on the low-frequency spectrums. There-
fore, our ALOFT adopts a perturb-while-preserve strategy
during training, where generated perturbations are applied
to the original low-frequency spectrums to enhance seman-
tic information. This strategy preserves the original low-
frequency spectrums while introducing diverse noise, re-
sulting in a more effective enhancement of semantic infor-
mation. We also conduct an experiment to validate the ef-
fectiveness of the perturb-while-preserve strategy. Specifi-
cally, we select three representative classes from PACS with
similar shapes but different textures, i.e., Giraffes, Horses,
and Dogs. As shown in Fig. 4, our ALOFT methods outper-
form the baseline model in these challenging classes.

Visual explanation. To visually verify the claim that
our ALOFT can encourage the model to learn global struc-
ture information, we provide the attention maps of the last
convolutional layer for ResNet-18, GFNet, ALOFT-S, and
ALOFT-E utilizing the visualization technique in [3]. The
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Figure 5. Visualization of attention maps of the last convolutional
layer using GradCAM [3] on PACS with Sketch as the target do-
main. Note that the redder the area indicates the higher attention.

results are presented in Fig. 5. We can observe that the
representations learned by ALOFT contain more global
structure information than those learned by ResNet-18 and
GFNet, which suggests that our ALOFT methods can help
the model learn comprehensive domain-invariant features,
enabling it to generalize well to target domains.
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