
A. Appendix

A.1. Cross-entropy loss and CAT loss

As we have presented in the paper, the capacity of identi-
fying class discriminative regions is critical for CNN mod-
els to perform classification. This capacity can be obtained
in two approaches: (1) train models from scratch using
cross-entropy loss, and (2) transfer CAMs to the trained
model. However, this capacity of the models trained with
the first approach is relatively restricted, since during the
raw training only hard labels of the training data are of-
fered. For the second approach, though offering hints about
the class discriminative regions of input will make it eas-
ier for the trained model to obtain this capacity, its perfor-
mance is also restricted by the accuracy of the model pro-
ducing the transferred CAMs, because CAMs generated by
the model with insufficient accuracy contain incorrect hints
for the class discriminative regions of input.

As the results reported in Table A.1 and Table A.2, when
the CAM producer is stronger than the trained model, only
transferring CAMs can let the trained model achieve bet-
ter performance compared with trained from scratch, since
the transferred CAMs are more correct than the one that
the trained model itself could generate. In contrast, when
the CAM producer is weaker than the trained model, trans-
ferring CAM is not that effective: its performance is worse
than using only the cross-entropy loss function during train-
ing. To sum up, (1) compared with the case where only
cross-entropy loss function is used, using CAT loss function
can further improve the performance of the trained model,
(2) using cross-entropy loss function guarantees the perfor-
mance of the trained model when the CAMs producer is
relatively weak. Thus, to ensure the performance of CAT-
KD, we need to utilize both cross-entropy loss function and
CAT loss function, and balance them correctly.

A.2. Guidance for balancing CE loss and CAT loss

As we have discussed in Appendix A.1, properly com-
bining the CAT loss and cross-entropy loss is of great im-
portance for the performance of CAT-KD. As depicted by
Eqn (6) in the paper, we use the factor β to balance CAT loss
and cross-entropy loss. Here we present a guide for tuning
β from our perspective. As can be observed in Table A.1
and Table A.2, the transferred CAMs bring more improve-
ment when the teacher is much stronger than the student,
while they might not be that beneficial when the capacity of
the teacher and student is similar. Thus, the optimal value
of β should be positively correlated with the capacity of the
teacher, but negatively correlated with the capacity of the
student. The relevant experimental verification is reported
in Table A.3.

CAM producer ResNet56 ResNet110 ResNet32×4
Acc 72.34 74.31 79.42

Trained Model ResNet110 ResNet110 ResNet110
Acc 74.31 74.31 74.31
CAT 71.86 74.54 78.13

Table A.1. Accuracy (%) of ResNet110 trained with CAT on
CIFAR-100 validation set, where the transferred CAMs are pro-
duced by various networks.

CAM producer ResNet56 ResNet50 ResNet32×4
Acc 72.34 79.34 79.42

Trained Model ResNet32×4 ResNet32×4 ResNet32×4
Acc 79.42 79.42 79.42
CAT 72.56 78.96 79.65

Table A.2. Accuracy (%) of ResNet32×4 trained with CAT on
CIFAR-100 validation set, where the transferred CAMs are pro-
duced by various networks.

Teacher ResNet56 WRN-40-2 ResNet32×4
Acc 72.34 75.61 79.42

β

10 74.08 74.96 74.57
50 76.28 76.83 76.87

100 75.84 77.31 77.42
300 74.78 76.71 77.86
600 74.63 76.43 78.26

Table A.3. Accuracy (%) of the model trained by CAT-KD on
CIFAR-100 with various β and different teacher. The student net-
work is ShuffleNetV1.

A.3. Normalization in CAT-KD

During CAT, we perform l2 normalization on the trans-
ferred CAMs to ensure information indicating the category
of the input is not released to the trained model. However,
this process is not necessary for CAT-KD. As can be ob-
served in Table A.4 and Table A.5, when the teacher and
student have different architecture, performing normaliza-
tion is beneficial for CAT-KD. However, it will become
harmful when the teacher and student have similar architec-
tures. A reasonable explanation is that the dark knowledge
contained in logits, which will be released to the student
model if the normalization is not performed, is relatively
more beneficial for the student networks that have simi-
lar structure to the teacher. This coincides with the phe-
nomenon that logit-based KD methods perform relatively
better when the teacher and student have similar structures,
which can be observed in Table 5 and Table 6 reported in the
paper. Thus, for CAT-KD, normalization is performed when
the student and teacher have different structures, while oth-
ers are not.
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Teacher ResNet110 WRN-40-2 ResNet32×4
Acc 74.31 75.61 79.42

Student ResNet32 WRN-16-2 ResNet8×4
Acc 71.14 73.26 72.5
(a) 73.62 75.6 76.91
(b) 73.45 75.46 76.29

Table A.4. Accuracy (%) of students trained with CAT-KD on
CIFAR-100, where students and teachers have similar structure.
(a): normalization is performed on the transferred CAMs during
CAT-KD. (b): without performing normalization.

Teacher ResNet50 WRN-40-2 ResNet32×4
Acc 79.34 75.61 79.42

Student MobileNetV2 ShuffleNetV1 ShuffleNetV1
Acc 64.6 70.5 70.5
(a) 70.86 77.24 77.78
(b) 71.36 77.35 78.26

Table A.5. Accuracy (%) of students trained with CAT-KD on
CIFAR-100, where students and teachers have different structure.
(a): normalization is performed on the transferred CAMs during
CAT-KD. (b): without performing normalization.

A.4. Extensions

To facilitate future works related to CAT and CAT-KD,
here we offer several extensive experiment results.

Transfer CAMs generated by other methods. Fol-
lowing [7], many works propose to generate CAM in other
ways [1, 4, 5]. Although these methods always consume
much more resources, their generated target class’s CAM
also correctly highlights the class discriminative regions.
To examine if CAT is still effective when the transferred
CAMs are generated in these generalized ways, we perform
CAT on CIFAR-10 and use GradCAM [4] to generate the
transferred CAMs. The trained model’s accuracy is only
among 10%-15%, indicating transferring GradCAM [4]
barely works. We think this is because CAMs of non-target
classes generated by the generalized ways [1, 4, 5] do not
contain useful information for CAT, though the visualiza-
tion of their target class’s CAM may look better than that
of [7].

Coefficients in CAT loss. As we have revealed in
Section 4.2, transferring CAMs of categories with higher
prediction scores will bring more improvement for the
trained model. Then an intuitive idea is that the trained
model should focus more on mimicking the CAMs of
categories with higher prediction scores. However, through
experiments, we find that preferentially transferring CAMs
of categories with higher prediction scores brings little
benefit for CAT and CAT-KD, while it will increase the

complexity and cost of the implementation of our method.
Thus, as reported in Eqn (5), we consider transferring
CAMs of all categories equally important and give them
the same coefficient 1/k.

A.5. More implementation details.

For all experiments reported in Section 4, without
special specifications, the transferred CAMs are pooled
into 2×2 during CAT and CAT-KD. For the experiments
reported in Section 4.2, since there do not exist compar-
isons with other methods, we change the batch size to 128
to accelerate the training, while other settings are the same
as those reported in Section 4.1.

Setup. All experiments are performed on an Ubuntu
16.04.1 LTS 64-bit server, with one Intel(R) Xeon(R)
Silver 4214 CPU, 128GB RAM. For experiments on
CIFAR-100, we utilize one RTX 2080 Ti GPU with 11GB
dedicated memory. For experiments on ImageNet, we
utilize four RTX 2080 Ti GPUs.

Visualization. All visualizations presented in the pa-
per are generated by ResNet50, which has 76.16% Acc on
ImageNet.

CAM’s original resolution. For CIFAR-100, the res-
olution of CAM generated by all the models involved in
this paper is 8×8 except ShuffleNet (4×4), ResNet50 (4×4),
VGG (4×4), and MobileNet (2×2). For ImageNet, their
original resolution is 7×7.

Figure 4. For the experiment reported in Figure 4
(right), the training set is reduced to only contain data of n
categories. The reserved categories are the first n categories
in the CIFAR-100 default category order.

Table 3. Binarization is performed on the transferred
CAMs before they are normalized.

Table 4. We employ TrivialAugment [3] to obtain
the strong teacher ResNet32×4, which has 81.36% accu-
racy on CIFAR-100 validation set. The results of DKD [6]
and ReviewKD [2] are obtained using author-released code.
For fairness, the hyper-parameters of CAT-KD, DKD,
and ReviewKD are not changed with the accuracy of the
teachers.

Table 9. We first use the code released by DKD [6]
to obtain student models trained with various distillation
methods. For the implementation of linear probing experi-
ments, STL-10 and TinyImageNet share an identical setup.
More specifically, we train linear fully connected (FC)
layers of models for 40 epochs with batch size 128 using
SGD. The initial learning rate is 0.1, divided by 10 at 10,
20, and 30 epochs.

Figure 7. For the experiments reported in Figure 7
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(left), the training data of each category is reduced by
the same proportion. The reduced data is selected in the
CIFAR-100 default order. For the results reported in Figure
7 (right), we evaluate the training time (per epoch) of
various KD methods, where one RTX 2080 Ti GPU with
11GB dedicated memory is used.
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