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Figure 1. Examples of 360◦ images in F-360iSOD [14] and SUN360 [11] datasets. Some randomly selected patches and their HF
components at low-/high-latitude regions are enlarged in the orange/blue boxes below.

In this supplementary document, we give more details
about the data analysis, method and experiments.

1. Additional analyses of Finding 1
As introduced in Section 3 of the main text, our Find-

ing 1 validates that in 360◦ images, low-latitude regions
tend to contain more textures, leading to larger HF compo-
nents. Fig. 1 illustrates some examples of indoor and out-
door scenes in F-360iSOD [14] and SUN360 [11] datasets,
respectively. Note that the HF components are calculated
by Haar transformation [1]. It can be seen that, for both in-
door and outdoor scenes, the image patches at low-latitude
regions (in orange) contain more textures with larger HF
components, compared with those at high-latitude regions

(in blue). This again verifies our Finding 1.

2. Additional formulations of invertible blocks
As introduced in Section 4.1 of the main text, the struc-

ture of invertible deformable and projection blocks endow
DINN360 the ability for reverse procedure through the same
model and parameters [3]. Let al1 and al2 denote the inputs
of the l-th invertible block, the corresponding outputs al+1

1

and al+1
2 can be obtained by

al+1
1 = al1 ⊙ exp(ρ(al2)) + ρ′(al2),

al+1
2 = al2 ⊙ exp(ρ(al+1

1 )) + ρ′(al+1
1 ),

(1)

1



Table 1. Results of WS-PSNR (dB) and WS-SSIM (×10−2) of different sample seeds for 4× rescaling on ODISR dataset.

Sample seed 1 2 3 4 5 6 7 8 9 10
WS-PSNR 31.92406 31.92394 31.92366 31.92348 31.92324 31.92296 31.92262 31.92418 31.92416 31.92380
WS-SSIM 89.90252 89.90227 89.90163 89.90126 89.90081 89.90021 89.89954 89.90279 89.90271 89.90195
Sample seed 11 12 13 14 15 16 17 18 19 20
WS-PSNR 31.92262 31.92260 31.9227 31.92259 31.92270 31.92263 31.92273 31.92257 31.92266 31.92263
WS-SSIM 89.89954 89.89970 89.89976 89.89963 89.89970 89.89950 89.89979 89.89965 89.89969 89.90000

Figure 2. Examples of quantitative results with different sample seeds for 4× rescaled HR images on ODISR dataset.

where ρ(·) and ρ′(·) denote the learnable scale and transla-
tion functions, and ⊙ is the Hadamard product. Therefore,
the corresponding reverse procedure can be formulated as
follows,

al2 = (al+1
2 − ρ′(al+1

1 ))⊙ exp(−ρ(al+1
1 )),

al1 = (al+1
1 − ρ′(al2))⊙ exp(−ρ(al2)).

(2)

3. Additional results
3.1. Ablation results on randomly sample

As introduced in Section 4.1, the latent variable z̃ in our
DINN360 is randomly sampled from a normalized Gaus-
sian distribution N (0, 1). Here, we pre-set 20 different ran-
dom seeds for the sampling of N (0, 1), and then evaluate
the performance of the rescaled HR images. The quantita-
tive and qualitative results are shown in Tab. 1 and Fig. 2,
respectively. It can be seen that DINN360 is able to gen-
erate the high-quality HR images with imperceptible visual
differences, which is independent of the specific sampled la-
tent variable. This validates that our DINN360 successfully
learn to project the HF component into a prior distribution.

3.2. More subjective results of HR images

To validate the qualitative performance in generalization
experiments, we randomly select some 4× and 8× rescaled
images in SUN360 [11], F-360iSOD [14] and YouTube360
[9] datasets. Fig. 3 shows these subjective results for some
randomly selected 360◦ images with the low-latitude and
high-latitude regions being zoomed in. It can be seen that,
compared with other rescaling methods, DINN360 is able
to recover more realistic textures and better image details,

Table 2. Values of some key hyper-parameters.

Reference Parameters Values

Eq. (13) Feedback proportion α = 0.3

Section 4.2
Number of IPBs 4

Number of IDBs 4

Eq. (12)

Coefficient of HR loss λH = 1

Coefficient of LR loss λL = 5× 10−2

Coefficient of Latent variable loss λlatent = 1× 10−5

Section 5.1

Initial learning rate 2.5× 10−4

Learning rate decay 0.7

Weight decay 1× 10−5

Training batch size 16

Training patch size 160× 160

Training iteration 5× 105

such as object boundaries and facial characteristics. This
validates the generalization ability of our DINN360 method
for generating high-quality HR images. To further mea-
sure the subjective improvement, we also evaluate 3 sub-
jective metrics for ours and HCFlow, in terms of FID [4]
↓ (9.98 v.s.11.37), BRISQUE [8] ↓ (43.64 v.s.47.27), and
VGCN [13] ↑ (59.59 v.s.56.08). The subjective results of
all compared methods and more qualitative examples will
be added in revision.

3.3. Qualitative results of downscaled LR images

To validate the qualitative performance of downscaling,
we also randomly select some 2×, 4× and 8× downscaled
LR images in ODISR [2] dataset. We compare our DINN360
method with (1) traditional interpolation methods, i.e., Bicu-
bic, Bilinear and Lanczos; (2) 2D rescaling methods, i.e.,
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Figure 3. Quantitative results of 4× and 8× rescaled HR images on SUN360, F-360iSOD and YouTube datasets.
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Figure 4. Quantitative results of 2×, 4× and 8× rescaled LR images on ODISR dataset.

TAD & TAU [5], CAR & EDSR [7,10], IRN [12] and HCFlow
[6]. As can be seen in Fig. 4, the downscaled LR images of
our and other compared methods have comparable perfor-
mance, which are all visually valid for exhibition.

3.4. Application on 360◦ image SR

Here, we directly apply the reverse upscaling of DINN360
for 4× 360◦ SR over the Bicubic downscaled LR images.
The experimental results show that, compared with SOTA
360◦ SR method 360SISR [9], our method improves WS-
PSNR by 0.12dB, 0.15dB, 0.13dB and 0.24dB on ODISR,
SUN360, F-360iSOD and YouTube360 datasets. This vali-
dates the effectiveness of our DINN360 method on SR ap-
plication.

4. Hyper-parameters of DINN360
Tab. 2 lists the key hyper-parameters of our DINN360,

including the parameters about model structures, loss func-
tions and model training, respectively. As introduced in
Section 5.3 of the main text, the hyper-parameters are tuned
to achieve the best final performance.
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